给我一段手写数字识别的pytorch代码
时间: 2023-11-16 19:05:47 浏览: 77
下面是一段简单的手写数字识别的pytorch代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, transforms
# 定义数据预处理方式
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data/',
train=True,
transform=transform,
download=True)
test_dataset = datasets.MNIST(root='./data/',
train=False,
transform=transform)
# 定义数据加载器
batch_size = 64
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))
x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)
# 定义模型、损失函数和优化器
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 训练模型
epochs = 10
for epoch in range(epochs):
running_loss = 0.0
for i, (inputs, labels) in enumerate(train_loader):
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
inputs, labels = data
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
```
这段代码使用了卷积神经网络(Convolutional Neural Network,CNN)来对手写数字进行识别。具体来说,它使用了两个卷积层和两个全连接层,其中每个卷积层都有一个ReLU激活函数和一个最大池化层。在训练过程中,使用了随机梯度下降(Stochastic Gradient Descent,SGD)优化器来最小化交叉熵损失函数。在测试过程中,用模型对测试集的数据进行预测,并计算模型的准确率。
阅读全文