使用 Parl 库实现transformer模型
时间: 2023-07-07 08:25:18 浏览: 126
transformer项目建模
4星 · 用户满意度95%
好的,我会尽力回答你的问题。
Parl是一个基于PaddlePaddle的分布式深度学习框架,可以用来实现transformer模型。以下是一个基本的transformer模型的实现过程:
1. 导入必要的库和模块:
```
import paddle.fluid as fluid
from paddle.fluid.dygraph import Layer
from paddle.fluid.dygraph import Sequential
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph import Embedding
from paddle.fluid.dygraph import MultiHeadAttention
from paddle.fluid.dygraph import LayerNorm
from paddle.fluid.dygraph import PositionwiseFeedForward
```
2. 定义一个Embedding层,用于将输入的token转换为向量:
```
class Embedder(Layer):
def __init__(self, vocab_size, emb_size):
super(Embedder, self).__init__()
self.emb = Embedding(size=[vocab_size, emb_size], dtype='float32')
def forward(self, x):
return self.emb(x)
```
3. 定义一个Positional Encoding层,用于添加位置信息到输入的向量中:
```
class PositionalEncoder(Layer):
def __init__(self, emb_size, max_seq_len):
super(PositionalEncoder, self).__init__()
self.emb_size = emb_size
self.max_seq_len = max_seq_len
# 计算PE矩阵,PE(i, 2j) = sin(i / (10000^(2j / d))),PE(i, 2j+1) = cos(i / (10000^(2j / d)))
pos = fluid.layers.range(0, max_seq_len, 1, 'float32')
pos = fluid.layers.unsqueeze(pos, [-1])
div_term = fluid.layers.pow(10000.0, fluid.layers.arange(0, emb_size, 2, 'float32') / emb_size)
div_term = fluid.layers.unsqueeze(div_term, [0, 1])
pe = fluid.layers.matmul(pos, div_term)
pe[:, :, 0::2] = fluid.layers.sin(pe[:, :, 0::2])
pe[:, :, 1::2] = fluid.layers.cos(pe[:, :, 1::2])
self.pe = fluid.layers.unsqueeze(pe, [0])
def forward(self, x):
x = x * fluid.layers.sqrt(fluid.layers.cast(self.emb_size, 'float32'))
x = x + self.pe[:, :x.shape[1], :]
return x
```
4. 定义一个Encoder层,用于编码输入的向量序列:
```
class EncoderLayer(Layer):
def __init__(self, emb_size, num_heads, hidden_size, dropout_rate):
super(EncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(num_heads, emb_size, dropout_rate)
self.ffn = PositionwiseFeedForward(emb_size, hidden_size, dropout_rate)
self.layernorm1 = LayerNorm(emb_size)
self.layernorm2 = LayerNorm(emb_size)
self.dropout1 = fluid.layers.Dropout(dropout_rate)
self.dropout2 = fluid.layers.Dropout(dropout_rate)
def forward(self, x):
residual = x
x = self.layernorm1(x)
x = self.self_attn(x, x, x)
x = self.dropout1(x)
x = x + residual
residual = x
x = self.layernorm2(x)
x = self.ffn(x)
x = self.dropout2(x)
x = x + residual
return x
```
5. 定义一个Encoder层堆叠,用于对输入的向量序列进行多层编码:
```
class Encoder(Layer):
def __init__(self, vocab_size, emb_size, num_heads, hidden_size, num_layers, dropout_rate, max_seq_len):
super(Encoder, self).__init__()
self.emb_size = emb_size
self.max_seq_len = max_seq_len
self.embedder = Embedder(vocab_size, emb_size)
self.pe = PositionalEncoder(emb_size, max_seq_len)
self.layers = Sequential()
for i in range(num_layers):
self.layers.add_sublayer('layer_{}'.format(i), EncoderLayer(emb_size, num_heads, hidden_size, dropout_rate))
def forward(self, x):
x = self.embedder(x)
x = self.pe(x)
for layer in self.layers:
x = layer(x)
return x
```
6. 最后,定义一个Transformer模型,它由一个Encoder层堆叠和一个输出层组成:
```
class Transformer(Layer):
def __init__(self, vocab_size, emb_size, num_heads, hidden_size, num_layers, dropout_rate, max_seq_len, output_size):
super(Transformer, self).__init__()
self.encoder = Encoder(vocab_size, emb_size, num_heads, hidden_size, num_layers, dropout_rate, max_seq_len)
self.output_layer = Linear(hidden_size, output_size)
def forward(self, x):
x = self.encoder(x)
x = fluid.layers.reduce_mean(x, dim=1) # 取平均值作为输出
x = self.output_layer(x)
return x
```
以上就是使用Parl库实现transformer模型的基本过程,你可以根据自己的需求进行修改和调整。希望能对你有所帮助!
阅读全文