使用对抗自编码将高维数据降维的代码
时间: 2023-11-28 12:06:12 浏览: 153
这里提供一个使用对抗自编码将高维数据降维的Python代码示例:
```python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
# 加载MNIST数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 定义模型参数
learning_rate = 0.001
batch_size = 128
n_epochs = 20
n_input = 784
n_hidden_1 = 256
n_hidden_2 = 128
n_latent = 20
# 定义输入占位符
X = tf.placeholder(tf.float32, [None, n_input])
# 定义编码器
def encoder(X):
with tf.variable_scope("encoder"):
hidden_1 = tf.layers.dense(X, n_hidden_1, activation=tf.nn.relu)
hidden_2 = tf.layers.dense(hidden_1, n_hidden_2, activation=tf.nn.relu)
latent = tf.layers.dense(hidden_2, n_latent)
return latent
# 定义解码器
def decoder(latent):
with tf.variable_scope("decoder"):
hidden_1 = tf.layers.dense(latent, n_hidden_2, activation=tf.nn.relu)
hidden_2 = tf.layers.dense(hidden_1, n_hidden_1, activation=tf.nn.relu)
output = tf.layers.dense(hidden_2, n_input, activation=tf.nn.sigmoid)
return output
# 定义对抗自编码器
def adversarial_autoencoder(X):
with tf.variable_scope("adversarial_autoencoder"):
# 编码器
latent = encoder(X)
# 解码器
output = decoder(latent)
# 判别器
D_latent = tf.layers.dense(latent, 1, activation=tf.nn.sigmoid)
return output, D_latent
# 定义损失函数
output, D_latent = adversarial_autoencoder(X)
reconstruction_loss = tf.reduce_mean(tf.square(output - X))
discriminator_loss = -tf.reduce_mean(tf.log(D_latent) + tf.log(1 - D_latent))
encoder_loss = -discriminator_loss + 0.01 * tf.reduce_mean(tf.square(latent))
# 定义优化器
optimizer_reconstruction = tf.train.AdamOptimizer(learning_rate).minimize(reconstruction_loss)
optimizer_encoder = tf.train.AdamOptimizer(learning_rate).minimize(encoder_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="encoder"))
# 训练模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
n_batches = mnist.train.num_examples // batch_size
for i in range(n_epochs):
for j in range(n_batches):
batch_x, _ = mnist.train.next_batch(batch_size)
_, loss_reconstruction = sess.run([optimizer_reconstruction, reconstruction_loss], feed_dict={X: batch_x})
_, loss_encoder = sess.run([optimizer_encoder, encoder_loss], feed_dict={X: batch_x})
print("Epoch {} - Reconstruction loss: {:.6f}, Encoder loss: {:.6f}".format(i+1, loss_reconstruction, loss_encoder))
# 生成编码后的数据
encoded_data = sess.run(latent, feed_dict={X: mnist.test.images})
# 可视化编码后的数据
plt.scatter(encoded_data[:, 0], encoded_data[:, 1], c=np.argmax(mnist.test.labels, axis=1))
plt.colorbar()
plt.show()
```
在这个示例中,我们使用了TensorFlow库来创建对抗自编码器模型,将MNIST数据集中的28x28像素图像编码为20维的向量。模型的损失函数包括重构损失、判别器损失和编码器损失。编码器和解码器都是两层全连接神经网络,判别器是一层全连接神经网络。最终生成编码后的数据,并通过散点图可视化。
阅读全文