python卷积神经网络手提包图像分割
时间: 2023-12-25 07:30:19 浏览: 106
卷积神经网络(Convolutional Neural Network,CNN)在图像分割任务中有广泛的应用。下面是一个使用Python进行手提包图像分割的示例:
```python
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
# 定义卷积神经网络模型
def unet(input_shape):
inputs = Input(input_shape)
# 编码器
conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
# 解码器
conv4 = Conv2D(512, 3, activation='relu', padding='same')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same')(conv4)
up1 = UpSampling2D(size=(2, 2))(conv4)
conv5 = Conv2D(256, 3, activation='relu', padding='same')(up1)
conv5 = Conv2D(256, 3, activation='relu', padding='same')(conv5)
up2 = UpSampling2D(size=(2, 2))(conv5)
conv6 = Conv2D(128, 3, activation='relu', padding='same')(up2)
conv6 = Conv2D(128, 3, activation='relu', padding='same')(conv6)
up3 = UpSampling2D(size=(2, 2))(conv6)
conv7 = Conv2D(64, 3, activation='relu', padding='same')(up3)
conv7 = Conv2D(64, 3, activation='relu', padding='same')(conv7)
# 输出层
outputs = Conv2D(1, 1, activation='sigmoid')(conv7)
model = Model(inputs=inputs, outputs=outputs)
return model
# 加载数据、训练模型等步骤省略
# 创建并编译模型
input_shape = (256, 256, 3) # 输入图像的尺寸
model = unet(input_shape)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_val, y_val))
# 使用模型进行预测
predictions = model.predict(x_test)
# 可以根据预测结果进行后续的图像分割处理
```
阅读全文