红绿灯检测,人脸识别,盲道识别小车代码
时间: 2024-03-01 15:50:10 浏览: 111
人脸识别检测代码
以下是一个简单的红绿灯检测、人脸识别、盲道识别小车的代码示例:
```python
import cv2
import numpy as np
# 加载红绿灯检测模型
red_light_cascade = cv2.CascadeClassifier('red_light_cascade.xml')
green_light_cascade = cv2.CascadeClassifier('green_light_cascade.xml')
# 加载人脸识别模型
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# 加载盲道识别模型
blind_path_cascade = cv2.CascadeClassifier('blind_path_cascade.xml')
# 初始化摄像头
cap = cv2.VideoCapture(0)
while True:
# 读取视频帧
ret, frame = cap.read()
# 红绿灯检测
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
red_lights = red_light_cascade.detectMultiScale(gray, 1.3, 5)
green_lights = green_light_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in red_lights:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv2.putText(frame, 'Red Light', (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
for (x, y, w, h) in green_lights:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(frame, 'Green Light', (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# 人脸识别
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
cv2.putText(frame, 'Face', (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 2)
# 盲道识别
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blind_paths = blind_path_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in blind_paths:
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 0), 2)
cv2.putText(frame, 'Blind Path', (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 2)
# 显示视频帧和检测结果
cv2.imshow('frame', frame)
# 按下 'q' 键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头并关闭所有窗口
cap.release()
cv2.destroyAllWindows()
```
这个代码会打开摄像头,并实时检测视频帧中的红绿灯、人脸和盲道。如果检测到目标,会在目标周围绘制一个矩形,并在矩形上绘制一个文本标签,以指示检测到的目标类型。你需要提前准备好训练好的模型文件,即红绿灯检测模型、人脸识别模型和盲道识别模型。
阅读全文