请给我一个FrozenLake作为测试的基于pytorch的强化学习模型
时间: 2024-09-20 08:14:17 浏览: 49
基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip
5星 · 资源好评率100%
FrozenLake是一个经典的强化学习环境,由OpenAI Gym库提供,它是一个二维网格世界,在其中有一个冰湖和几个可以行走的格子。目标是安全地从起始位置走到终点,同时避开滑倒掉进湖里。为了在这个环境中使用PyTorch构建一个强化学习模型,你可以选择Q-learning、策略梯度方法或其他深度学习算法,如DQN(Deep Q-Networks)。
下面是一个简单的基于PyTorch的DQN模型的示例:
```python
import gym
from collections import deque
import torch
import torch.nn as nn
import torch.optim as optim
class DQN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
# 初始化环境
env = gym.make('FrozenLake-v0')
# 定义超参数
input_size = env.observation_space.n
hidden_size = 256
output_size = env.action_space.n
batch_size = 32
gamma = 0.99 # 学习率衰减因子
epsilon = 1.0 # 初始探索概率
eps_decay = 0.995 # 探索概率随时间递减
max_episodes = 10000
memory_capacity = 10000
model = DQN(input_size, hidden_size, output_size)
optimizer = optim.Adam(model.parameters())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 训练过程
for episode in range(max_episodes):
state = env.reset()
state = torch.tensor([state], dtype=torch.float).to(device)
done = False
total_reward = 0
while not done:
with torch.no_grad():
action = model(state).max(1)[1].item()
# 混合随机策略和探索策略
if torch.rand(1) < epsilon:
action = env.action_space.sample()
next_state, reward, done, _ = env.step(action)
next_state = torch.tensor([next_state], dtype=torch.float).to(device)
memory.push(state, action, reward, next_state, done)
total_reward += reward
if len(memory) > batch_size:
experiences = memory.sample(batch_size)
states, actions, rewards, next_states, dones = zip(*experiences)
states = torch.cat(states)
actions = torch.tensor(actions)
rewards = torch.tensor(rewards, dtype=torch.float)
next_states = torch.cat(next_states)
dones = torch.tensor(dones)
q_values = model(states).gather(1, actions.unsqueeze(1)).squeeze(1)
next_q_values = model(next_states).detach().max(1)[0]
expected_q_values = rewards + gamma * (1 - dones) * next_q_values
loss = criterion(q_values, expected_q_values)
optimizer.zero_grad()
loss.backward()
optimizer.step()
state = next_state
epsilon *= eps_decay
print(f"Episode {episode+1}: Total Reward = {total_reward}")
```
别忘了安装必要的库,例如`gym`、`torch`等,并根据需要调整参数。训练完成后,你可以观察模型在 FrozenLake 环境中的性能并评估其学习效果。
阅读全文