GPIO_Init_Structure.GPIO_Mode = GPIO_Mode_Out_PP
时间: 2024-06-19 11:03:53 浏览: 78
GPIO_Init_Structure.GPIO_Mode = GPIO_Mode_Out_PP 是 STM32 的 GPIO 初始化结构体中的一个参数,它表示将 GPIO 引脚配置为推挽输出模式,即将输出电平拉高时直接输出高电平,在输出电平拉低时直接输出低电平。这种输出模式的特点是输出电流比较大,可以直接驱动 LED 灯等外设。
另外需要注意的是,GPIO_Init_Structure 是一个结构体,用于配置 STM32 的 GPIO 端口的相关参数,其中包括了 GPIO 端口的模式、速度、上下拉等参数。在使用 STM32 的 GPIO 端口时,需要根据具体的硬件连接和功能需求来进行初始化设置。如果需要了解更多关于 STM32 的 GPIO 端口的使用方法,可以参考相应的开发文档或者参考相关的开发板资料。
相关问题
void Tim3_Config(){ GPIO_InitTypeDef structure; TIM_TimeBaseInitTypeDef Tim_structure; TIM_OCInitTypeDef Tim_pwmstructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO,ENABLE); GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE); structure.GPIO_Pin=GPIO_Pin_7; structure.GPIO_Mode=GPIO_Mode_AF_PP; structure.GPIO_Speed=GPIO_Speed_50MHz; GPIO_Init(GPIOC,&structure); Tim_structure.TIM_Period=ARR1; Tim_structure.TIM_Prescaler=PSC1; Tim_structure.TIM_ClockDivision=TIM_CKD_DIV1; Tim_structure.TIM_CounterMode=TIM_CounterMode_Up; TIM_TimeBaseInit(TIM3,&Tim_structure); Tim_pwmstructure.TIM_OCMode=TIM_OCMode_PWM2; Tim_pwmstructure.TIM_OutputState=TIM_OutputState_Enable; Tim_pwmstructure.TIM_OCPolarity=TIM_OCPolarity_Low; TIM_OC2Init(TIM3,&Tim_pwmstructure); TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable); TIM_Cmd(TIM3,ENABLE); }解释一下这段代码
这段代码是用来配置STM32的定时器3(TIM3)和GPIOC的,实现PWM输出。具体的实现步骤如下:
1. 调用RCC_APB1PeriphClockCmd函数打开TIM3时钟和RCC_APB2PeriphClockCmd函数打开GPIOC和AFIO的时钟。
2. 调用GPIO_PinRemapConfig函数将GPIO_FullRemap_TIM3重映射到TIM3定时器。
3. 初始化GPIOC的结构体structure,设置GPIO_Pin_7为复用推挽模式,最大速度为50MHz。
4. 初始化TIM3计数器的结构体Tim_structure,设置定时器的周期为ARR1,预分频系数为PSC1,时钟分割为TIM_CKD_DIV1,计数模式为向上计数。
5. 初始化TIM3的输出比较结构体Tim_pwmstructure,设置输出模式为PWM2,使能输出状态,输出极性为低电平。
6. 调用TIM_OC2Init函数对TIM3的通道2进行初始化,并用TIM_OC2PreloadConfig函数使能TIM3的通道2预装载。
7. 最后调用TIM_Cmd函数使能TIM3定时器。
通过以上步骤,定时器3和GPIOC的初始化工作就完成了,可以实现PWM输出。
#include "main.h" #include "stdio.h" #include "string.h" #include "time.h" UART_HandleTypeDef huart1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART1_UART_Init(); while (1) { time_t now = time(NULL); struct tm *timeinfo = localtime(&now); char time_str[9]; sprintf(time_str, "%02d:%02d:%02d", timeinfo->tm_hour, timeinfo->tm_min, timeinfo->tm_sec); HAL_UART_Transmit(&huart1, (uint8_t *)time_str, strlen(time_str), HAL_MAX_DELAY); HAL_Delay(1000); } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } static void MX_USART1_UART_Init(void) { huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_9, GPIO_PIN_RESET); /*Configure GPIO pin : PA9 */ GPIO_InitStruct.Pin = GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } 在以上代码的基础上,编写代码以实现计算发送 hh:mm:ss到单片机,修改单片机时间
可以使用串口接收单片机发送过来的时间数据,然后通过C语言中的time()函数来设置单片机的时间。下面是示例代码:
```
#include "main.h"
#include "stdio.h"
#include "string.h"
#include "time.h"
UART_HandleTypeDef huart1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_USART1_UART_Init();
// 用于接收单片机发送过来的时间数据
char time_input[9];
while (1) {
// 接收串口数据
HAL_UART_Receive(&huart1, (uint8_t *)time_input, 9, HAL_MAX_DELAY);
// 将接收到的时间数据转换成struct tm格式
struct tm timeinfo = {0};
sscanf(time_input, "%d:%d:%d", &timeinfo.tm_hour, &timeinfo.tm_min, &timeinfo.tm_sec);
// 设置单片机时间
time_t now = mktime(&timeinfo);
if(now != -1) {
if(stm32_settime(now) == 0) {
printf("Time set successfully!\r\n");
}
else {
printf("Failed to set time.\r\n");
}
}
else {
printf("Invalid time data.\r\n");
}
}
}
// 设置单片机时间
int stm32_settime(time_t t) {
struct tm *timeinfo = localtime(&t);
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
sTime.Hours = timeinfo->tm_hour;
sTime.Minutes = timeinfo->tm_min;
sTime.Seconds = timeinfo->tm_sec;
sDate.WeekDay = timeinfo->tm_wday;
sDate.Month = timeinfo->tm_mon + 1;
sDate.Date = timeinfo->tm_mday;
sDate.Year = timeinfo->tm_year - 100;
if(HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK) {
return -1;
}
if(HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN) != HAL_OK) {
return -1;
}
return 0;
}
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) {
Error_Handler();
}
}
static void MX_USART1_UART_Init(void) {
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK) {
Error_Handler();
}
}
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_9, GPIO_PIN_RESET);
/*Configure GPIO pin : PA9 */
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
```
同时,需要在单片机上添加RTC实时时钟模块,并在CubeMX中进行配置。需要注意的是,使用RTC模块前需要先初始化时钟,可以使用RCC_OscConfig和RCC_ClkConfig函数来进行初始化。在设置时间时,需要将时间数据转换成RTC模块所需的格式,并调用HAL_RTC_SetTime和HAL_RTC_SetDate函数来设置时间和日期。
阅读全文