knn图片分类器python实现
时间: 2024-08-15 18:11:01 浏览: 53
K近邻(KNN)算法是一种基于实例的学习方法,在Python中,可以使用sklearn库来实现KNN图片分类器。以下是基本步骤:
1. 导入所需库:
```python
import numpy as np
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
```
2. 加载数据集(这里以手写数字为例):
```python
digits = load_digits()
X = digits.data
y = digits.target
```
3. 数据预处理和划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. 初始化并训练KNN分类器,比如选择k=5作为邻居数:
```python
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
```
5. 预测测试集的结果:
```python
y_pred = knn.predict(X_test)
```
6. 计算准确率:
```python
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
阅读全文