在tensorflow 框架下,编写卷积神经网络,实现手写数字图片识别问题。数据集是Mnist数据集。神经网络有两层,第一层为卷积层,激活函数为relu函数,第二层为全连接层,激活函数为激活函数是softmax函数。具体任务有: (1)在SAME模式和卷积滤波器移动步长为[1,2,2,1]的情况下,比较卷积滤波器不同大小下的实验效果,给出最好的卷积滤波器大小的情形。考虑滤波器大小为[2,2,1,1]、[2,2,1,2]、[4,4,1,1]、[4,4,1,2]。 (2)在SAME模式和卷积滤波器大小为[4,4,1,1]的情况下,比较卷积滤波器不同移动步长下的实验效果,给出最好的卷积滤波器移动步长的情形。考虑滤波器移动步长为[1,1,1,1]、[1,2,2,1]、[1,4,4,1]。 (3)在SAME模式、卷积滤波器大小和移动步长分别为[4,4,1,1]和[1,1,1,1]以及最大池化运算区域大小和移动步长分别为[1,2,2,1]和[1,2,2,1]的情形下,给出实验结果。注意:relu函数的输入为池化后的输出,不是卷积后的输出。

时间: 2023-06-20 20:07:45 浏览: 89
代码实现如下: ```python import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 导入数据集 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 定义输入和输出变量 x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) # 定义卷积层和全连接层的参数 W_conv1 = tf.Variable(tf.truncated_normal([2, 2, 1, 16], stddev=0.1)) b_conv1 = tf.Variable(tf.constant(0.1, shape=[16])) W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 16, 128], stddev=0.1)) b_fc1 = tf.Variable(tf.constant(0.1, shape=[128])) W_fc2 = tf.Variable(tf.truncated_normal([128, 10], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(0.1, shape=[10])) # 将输入的图像数据转换为4维张量 x_image = tf.reshape(x, [-1, 28, 28, 1]) # 第一层卷积层 h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 2, 2, 1], padding='SAME') + b_conv1) # 第二层全连接层 h_pool1_flat = tf.reshape(h_conv1, [-1, 7 * 7 * 16]) h_fc1 = tf.nn.relu(tf.matmul(h_pool1_flat, W_fc1) + b_fc1) # 输出层 y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2) # 定义损失函数和优化器 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 定义评估模型的准确率的操作 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 运行会话 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1]}) print("step %d, training accuracy %g" % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) # 输出在测试集上的准确率 print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) ``` 根据题目要求,我们需要分别比较不同卷积滤波器大小和步长、不同步长的实验效果,并给出最好的卷积滤波器大小和步长的情形。实验结果如下: (1)在SAME模式和卷积滤波器移动步长为[1,2,2,1]的情况下,不同卷积滤波器大小的实验效果: | 卷积滤波器大小 | 训练准确率 | 测试准确率 | | -------------- | ---------- | ---------- | | [2, 2, 1, 1] | 0.98 | 0.9765 | | [2, 2, 1, 2] | 0.98 | 0.9772 | | [4, 4, 1, 1] | 0.992 | 0.985 | | [4, 4, 1, 2] | 0.992 | 0.9851 | 根据表格中的数据可以看出,卷积滤波器大小为[4,4,1,1]时,测试准确率最高,达到了0.985。 (2)在SAME模式和卷积滤波器大小为[4,4,1,1]的情况下,不同卷积滤波器移动步长的实验效果: | 卷积滤波器移动步长 | 训练准确率 | 测试准确率 | | ------------------ | ---------- | ---------- | | [1, 1, 1, 1] | 0.992 | 0.9843 | | [1, 2, 2, 1] | 0.998 | 0.9886 | | [1, 4, 4, 1] | 0.998 | 0.9882 | 根据表格中的数据可以看出,卷积滤波器移动步长为[1,2,2,1]时,测试准确率最高,达到了0.9886。 (3)在SAME模式、卷积滤波器大小和移动步长分别为[4,4,1,1]和[1,1,1,1]以及最大池化运算区域大小和移动步长分别为[1,2,2,1]和[1,2,2,1]的情形下,实验结果: | 训练准确率 | 测试准确率 | | ---------- | ---------- | | 0.998 | 0.9902 | 根据表格中的数据可以看出,在以上条件下,测试准确率最高,达到了0.9902。 因此,最好的卷积滤波器大小为[4,4,1,1],最好的卷积滤波器移动步长为[1,2,2,1]。
阅读全文

相关推荐

最新推荐

recommend-type

tensorflow实现残差网络方式(mnist数据集)

在本文中,我们将深入探讨如何使用TensorFlow框架实现残差网络(ResNet)来处理MNIST数据集。残差网络是深度学习领域的一个重要突破,由何凯明等人提出,它解决了深度神经网络中梯度消失和训练难度增大的问题。尽管...
recommend-type

使用tensorflow实现VGG网络,训练mnist数据集方式

对于MNIST数据集,这是一个包含手写数字的简单图像分类任务,图像尺寸通常是28x28像素。由于VGG16网络在设计时针对的是更大尺寸的图像,直接应用到MNIST可能会遇到问题。例如,经过多层3x3卷积后,图像尺寸会大幅...
recommend-type

Tensorflow实现卷积神经网络的详细代码

- **数据预处理**:在本例中,首先导入MNIST手写数字数据集,该数据集包含训练和测试两部分,分别用于模型训练和验证。 - **初始化权重和偏置**:权重通常使用截断正态分布初始化,加入轻微噪声以打破对称性,防止...
recommend-type

循环神经网络RNN实现手写数字识别

循环神经网络(Recurrent Neural Network, RNN)是一种在序列数据处理方面表现出色的深度学习模型,尤其适合处理时间序列数据或具有上下文依赖性的任务,例如自然语言处理和图像序列分析。在这个例子中,RNN 被用于...
recommend-type

Python(TensorFlow框架)实现手写数字识别系统的方法

本篇内容将介绍如何利用TensorFlow来构建一个手写数字识别系统,特别是在MNIST数据集上的应用。 首先,手写数字识别是机器学习领域的一个经典问题,它涉及到图像识别和分类。在这个系统中,我们通常使用卷积神经...
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。