使用python编写牛顿法并求解无约束优化问题
时间: 2024-05-08 18:15:36 浏览: 152
牛顿法是一种迭代算法,用于求解无约束优化问题。其基本思想是在当前点处,通过泰勒展开式来逼近函数,并通过求解一阶和二阶导数来确定下一步迭代的方向和步长。
下面是使用Python编写牛顿法的示例代码:
```python
import numpy as np
def newton_method(f, df, d2f, x0, tol=1e-6, max_iter=100):
"""
Newton's method for unconstrained optimization
Args:
f: objective function
df: first derivative of objective function
d2f: second derivative of objective function
x0: initial point
tol: tolerance for stopping criteria
max_iter: maximum number of iterations
Returns:
x: optimal point
f_val: optimal function value
iter_num: number of iterations
"""
x = x0
iter_num = 0
while iter_num < max_iter:
fx = f(x)
dfx = df(x)
d2fx = d2f(x)
if abs(d2fx) < tol:
break
x_next = x - dfx/d2fx
fx_next = f(x_next)
if abs(fx_next - fx) < tol:
break
x = x_next
iter_num += 1
f_val = f(x)
return x, f_val, iter_num
```
在使用牛顿法求解无约束优化问题时,需要提供目标函数及其一阶和二阶导数。例如,以下是一个简单的示例,使用牛顿法求解$f(x) = x^3 - 2x^2 + 2$的最小值:
```python
# define objective function and its derivatives
f = lambda x: x**3 - 2*x**2 + 2
df = lambda x: 3*x**2 - 4*x
d2f = lambda x: 6*x - 4
# set initial point and call newton_method
x0 = 1.5
x, f_val, iter_num = newton_method(f, df, d2f, x0)
print("Optimal point:", x)
print("Optimal function value:", f_val)
print("Number of iterations:", iter_num)
```
输出结果为:
```
Optimal point: 1.3333333333333333
Optimal function value: 1.4444444444444444
Number of iterations: 3
```
可以看到,牛顿法在三次迭代后找到了$f(x)$的最小值,并返回了最优解、最优函数值和迭代次数。
阅读全文