负单位反馈系统的前馈函数定义为 G(s) = 10* (2s + 5) * (s^2 + 6s + 34) / ((s + 7) * (50s^4 + 644s^3 + 996s^2 - 739s - 3559)) 系统的输入为r (t) = u (t)。其中K=25。 您将需要提供一个Matlab代码来计算以下值,在命令行窗口输出值,并且显示在根轨迹图中。 (1)渐近线与实轴的交点σa (2)渐近线与实轴的夹角ϴa (3)分离点 (4)根轨迹与虚轴的交点。 解释:渐近线是无穷远处极点或零点的线,由其与实数轴的交点和其与实数轴的夹角确定。分离点为两个极点间存在根轨迹会在一个点进行分离。

时间: 2024-03-15 14:44:51 浏览: 10
以下是计算步骤和Matlab代码: 步骤1:计算系统的开环传递函数 ``` num = 10 * [2, 5, 1, 34]; % 分子系数 den = conv([1, 7], [50, 644, 996, -739, -3559]); % 分母系数 G = tf(num, den); % 创建传递函数 ``` 步骤2:计算系统的根轨迹 ``` rlocus(K * G); % 绘制根轨迹 ``` 步骤3:计算渐近线和分离点 ``` [num, den] = tfdata(G); p = roots(den); z = roots(num); n = length(p) - length(z); sigma_a = real(sum(p) - sum(z)) / n; % 计算渐近线与实轴的交点 theta_a = (2 * (0:n-1) + 1) * pi / (2 * n) - angle(den(end)); % 计算渐近线与实轴的夹角 sep_points = rlocus(K * G, 1i * linspace(-10, 10, 10000)); % 计算根轨迹与虚轴的交点 sep_points = sep_points(imag(sep_points) ~= 0); ``` 步骤4:在命令行窗口输出结果 ``` disp(['渐近线与实轴的交点: ', num2str(sigma_a)]); disp(['渐近线与实轴的夹角: ', num2str(theta_a * 180 / pi), '°']); disp(['分离点: ', num2str(sep_points)]); ``` 步骤5:显示根轨迹图 ``` title('Root Locus'); xlabel('Real Axis'); ylabel('Imaginary Axis'); grid on; ``` 完整的Matlab代码如下: ```matlab num = 10 * [2, 5, 1, 34]; % 分子系数 den = conv([1, 7], [50, 644, 996, -739, -3559]); % 分母系数 G = tf(num, den); % 创建传递函数 K = 25; % 比例增益 rlocus(K * G); % 绘制根轨迹 [num, den] = tfdata(G); p = roots(den); z = roots(num); n = length(p) - length(z); sigma_a = real(sum(p) - sum(z)) / n; % 计算渐近线与实轴的交点 theta_a = (2 * (0:n-1) + 1) * pi / (2 * n) - angle(den(end)); % 计算渐近线与实轴的夹角 sep_points = rlocus(K * G, 1i * linspace(-10, 10, 10000)); % 计算根轨迹与虚轴的交点 sep_points = sep_points(imag(sep_points) ~= 0); disp(['渐近线与实轴的交点: ', num2str(sigma_a)]); disp(['渐近线与实轴的夹角: ', num2str(theta_a * 180 / pi), '°']); disp(['分离点: ', num2str(sep_points)]); title('Root Locus'); xlabel('Real Axis'); ylabel('Imaginary Axis'); grid on; ```

相关推荐

修改下列代码,利用下面函数,使其满足:负统一反馈系统具有前馈函数,定义为G (s) = 10K *(2s + 5)*(s^2 + 6s + 34)/((s + 7)*(50s^4 + 644s^3 + 996s^2 - 739s - 3559))系统的输入为r (t) = u (t)。你将需要提供一个Matlab代码来画出三个系统的输出响应,包括无补偿、被动PD和被动PID。 clear all; % Clear all memory clc; % Clear our screen syms t s; % Defines symbol t and s tRange = 0:0.1:20; % Define my time range, start time: increment steps: end time %------------------------------------------------------------------------ K = 20; % Uncompensated forward gain compS = K; % Uncompensated rt = heaviside(t); % Input - unit step response r(t) = u(t) ct = controlSys(rt,tRange,compS); % c(t) output of my system - negative feedback %------------------------------------------------------------------------ K = 20; % PD compensated forward gain compS = K*(s+1)/(s+1.1); % PD compensator rt = heaviside(t); % Input - unit step response r(t) = u(t) ct2 = controlSys(rt,tRange,compS); % c(t) output of my system - negative feedback %------------------------------------------------------------------------ K = 20; % PID compensated forward gain compS = K*(s+1.1)/(s+1.2); % PID compensator rt = heaviside(t); % Input - unit step response r(t) = u(t) ct3 = controlSys(rt,tRange,compS); % c(t) output of my system - negative feedback plot(tRange,real(ct),tRange,real(ct2),tRange,real(ct3),'LineWidth',3) % Plot our output function legend('Uncompensated','PD compensated','PID compensated') ylabel('Output response','fontSize',14) xlabel('Time (t)','fontSize',14) grid on function [ctOut] = controlSys(rt,trange,compS) syms s t; plant = (10*(2*s+5)*(34+6*s+s^2))/((s+7)*(50*s^4+644*s^3+996*s^2-739*s-3559)); gS = compS*plant; hS = 1; rS = laplace(rt); tS = gS / (1+gS*hS); cS = rS*tS; ct = ilaplace(cS,s,t); ctOut = vpa(subs(ct, t, trange));

最新推荐

recommend-type

bp-pid的S型函数

BP神经网络是一种具有多层前馈型结构的神经网络,其结构中包含有隐含层。主要是通过采取最速下降法调节网络中各个神经元之间连接权值,使网络获得最小的误差。S函数的编写运行,需根据需要输入相应的数值。
recommend-type

机器学习+研究生复试+求职+面试题

汇总了计算机研究生复试有关机器学习各章节简答题,使用了易于口头表达的语言进行了总结。...2. BP(back propagation,多层前馈)神经网络 3. 循环神经网络RNN、LSTM 网络: 4. CNN 网络 5. Hopfield 神经网络
recommend-type

基础电子中的一款反馈式主动降噪耳机的设计

 同设计前馈式耳机一样,反馈式耳机也需要特定的设备,其中最重要的就是能够测量频率响应和相位响应的音频测量系统。  适合用来进行这些测量的音频设备包括Audio Precision、Bruel Soundcheck等。搭配不同类型...
recommend-type

基础电子中的DIY无极限:自己设计一款反馈式主动降噪耳机,其实很简单

 设备综述 同设计前馈式耳机一样,反馈式耳机也需要特定的设备,其中最重要的就是能够测量频率响应和相位响应的音频测量系统。 适合用来进行这些测量的音频设备包括Audio Precision、Bruel Soundcheck等。搭配...
recommend-type

永磁同步电机电流前馈与电压补偿法的研究.pdf

永磁同步电机电流前馈与电压补偿法的研究pdf,文章介绍了利用电流前馈调节和电压补偿法提高电动汽车用内埋式永磁同步电机(IPMSM)控制器的控制性能和电磁兼容性的方法,在控制算法中增加了电流前馈调节和电压补偿...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。