import numpy as np import pandas as pd from sklearn.feature_selection import mutual_info_classif import warnings warnings.filterwarnings('ignore') data = pd.read_excel('高分修正指标选取.xls') data = data.loc[:, ['killip分级', '收缩压', '入院心率', '年龄', '血肌酐', '全因死亡']] X = data["killip分级"].values.reshape(-1, 1) y = data["全因死亡"].values.reshape(-1, 1) X = np.array(X) y = np.array(y) mutual_info_scores = mutual_info_classif(X, y)[0] print(mutual_info_scores)为何上述代码每次运行结果不一致
时间: 2024-02-05 10:03:05 浏览: 151
上述代码中使用的是互信息法(Mutual Information),它的计算结果可能受样本的随机性影响,因此每次运行得到的结果可能不一致。这是因为互信息法的计算涉及到样本的分布情况和数据量的大小,每次运行时这些因素都可能会有所变化,从而导致结果不一致。
如果想要得到稳定的结果,可以考虑对数据进行多次采样,将采样得到的结果取平均值。另外,也可以尝试使用其他的特征选择方法来得到稳定的结果。
相关问题
在Python中想运行from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit,StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_auc_score import math import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random怎么操作
要在Python中运行这些代码,你需要确保已经安装了相应的包。大多数包都可以使用`pip`进行安装。
首先,在命令行中运行以下命令来安装所需的包:
```bash
pip install scikit-learn pandas matplotlib numpy
```
然后,在你的Python脚本中导入所需的库:
```python
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
import pandas as pd
from sklearn import svm
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colors
from sklearn.model_selection import train_test_split
from sklearn import datasets
from matplotlib.colors import ListedColormap
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict
from sklearn.model_selection import KFold
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score
import datetime
import multiprocessing as mp
from sklearn.ensemble import StackingClassifier
from sklearn.pipeline import make_pipeline
from sklearn.svm import LinearSVC
import random
```
请确保在运行这些代码之前,已经安装了所需的Python库。如果遇到任何问题,请确保已正确安装这些库,并且版本与代码兼容。
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tqdm.notebook import tqdm import math from sklearn.metrics import log_loss, make_scorer from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import KFold, StratifiedKFold, StratifiedGroupKFold from lightgbm import LGBMClassifier import warnings warnings.filterwarnings("ignore")
您好!对于您的代码导入部分,我注意到您导入了一些常用的数据处理和机器学习库,包括numpy、pandas、matplotlib、seaborn等。此外,还导入了一些特定的模块,如tqdm、math等。
这些库和模块通常用于数据预处理、特征工程、模型训练和评估等任务。您是否有关于这些库的具体问题,或者需要帮助解决特定问题呢?请您继续提问,我将尽力回答。
阅读全文