实验目的自己编程实现对C语言的词法分析程序,加深对词法分析原理的理解。实验要求C语言分为关键字、标识符、数字、运算符、界符五类。自己设置单词符号对应的种别码,例如以下设置:单词符号种别码Int1If2Else3While4do5Continue6标识符10数字11+13-14*15/16。。。。。。。。。。。。2、要求能够识别以下代码:int main(){char c=56;int a=1; int bb_b1=7; if(a>bb_b1)c=9; else c=90;while(1){;}return 67; }使用Devc++进行代码的编写

时间: 2024-01-22 16:18:19 浏览: 77
RAR

实验一 词法分析 c语言

star3星 · 编辑精心推荐
以下是一个简单的C语言词法分析程序,实现了对给定代码的词法分析。在本程序中,我们将C语言分为关键字、标识符、数字、运算符和界符五类,并设置了对应的种别码。 ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <ctype.h> #define MAX_TOKEN_LEN 100 // 最大单词长度 #define MAX_CODE_LEN 1000 // 最大代码长度 // 单词符号种别码定义 #define KW_INT 1 #define KW_IF 2 #define KW_ELSE 3 #define KW_WHILE 4 #define KW_DO 5 #define KW_CONTINUE 6 #define IDENT 10 #define NUM 11 #define PLUS 13 #define MINUS 14 #define TIMES 15 #define DIV 16 #define LPAREN 17 #define RPAREN 18 #define LBRACE 19 #define RBRACE 20 #define SEMI 21 #define COMMA 22 #define ASSIGN 23 #define GT 24 #define GE 25 #define LT 26 #define LE 27 #define EQ 28 #define NE 29 // 单词符号种别码和字符串的对应关系 char *token_type_str[] = { "", "KW_INT", "KW_IF", "KW_ELSE", "KW_WHILE", "KW_DO", "KW_CONTINUE", "", "", "", "", "IDENT", "NUM", "", "PLUS", "MINUS", "TIMES", "DIV", "LPAREN", "RPAREN", "LBRACE", "RBRACE", "SEMI", "COMMA", "ASSIGN", "GT", "GE", "LT", "LE", "EQ", "NE" }; // 单词符号种别码和字符串的对应关系 char *token_value_str[] = { "", "int", "if", "else", "while", "do", "continue", "", "", "", "", "", "", "", "+", "-", "*", "/", "(", ")", "{", "}", ";", ",", "=", ">", ">=", "<", "<=", "==", "!=" }; // 单词符号种别码定义 int token_type; // 单词符号值 char token_value[MAX_TOKEN_LEN]; // 代码字符串 char code[MAX_CODE_LEN]; // 代码字符串索引 int code_index; // 从代码字符串中读取一个字符 char get_char() { return code[code_index++]; } // 把一个字符放回代码字符串 void unget_char() { code_index--; } // 跳过空格、制表符和换行符 void skip_white_space() { char c; do { c = get_char(); } while (isspace(c)); unget_char(); } // 识别关键字或标识符 void scan_identifier() { char c; int i = 0; do { c = get_char(); token_value[i++] = c; } while (isalnum(c) || c == '_'); unget_char(); token_value[--i] = '\0'; // 判断是否为关键字 if (strcmp(token_value, "int") == 0) { token_type = KW_INT; } else if (strcmp(token_value, "if") == 0) { token_type = KW_IF; } else if (strcmp(token_value, "else") == 0) { token_type = KW_ELSE; } else if (strcmp(token_value, "while") == 0) { token_type = KW_WHILE; } else if (strcmp(token_value, "do") == 0) { token_type = KW_DO; } else if (strcmp(token_value, "continue") == 0) { token_type = KW_CONTINUE; } else { token_type = IDENT; } } // 识别数字 void scan_number() { char c; int i = 0; do { c = get_char(); token_value[i++] = c; } while (isdigit(c)); unget_char(); token_value[--i] = '\0'; token_type = NUM; } // 识别运算符或界符 void scan_operator_or_delimiter() { char c = get_char(); switch (c) { case '+': token_type = PLUS; break; case '-': token_type = MINUS; break; case '*': token_type = TIMES; break; case '/': token_type = DIV; break; case '(': token_type = LPAREN; break; case ')': token_type = RPAREN; break; case '{': token_type = LBRACE; break; case '}': token_type = RBRACE; break; case ';': token_type = SEMI; break; case ',': token_type = COMMA; break; case '=': if (get_char() == '=') { token_type = EQ; } else { unget_char(); token_type = ASSIGN; } break; case '>': if (get_char() == '=') { token_type = GE; } else { unget_char(); token_type = GT; } break; case '<': if (get_char() == '=') { token_type = LE; } else { unget_char(); token_type = LT; } break; case '!': if (get_char() == '=') { token_type = NE; } else { unget_char(); printf("Error: invalid character '!' at position %d.\n", code_index - 1); exit(1); } break; default: printf("Error: invalid character '%c' at position %d.\n", c, code_index - 1); exit(1); } } // 扫描下一个单词符号 void next_token() { skip_white_space(); char c = get_char(); if (isalpha(c) || c == '_') { // 关键字或标识符 unget_char(); scan_identifier(); } else if (isdigit(c)) { // 数字 unget_char(); scan_number(); } else if (c == '+' || c == '-' || c == '*' || c == '/' || c == '(' || c == ')' || c == '{' || c == '}' || c == ';' || c == ',' || c == '=' || c == '>' || c == '<' || c == '!') { // 运算符或界符 scan_operator_or_delimiter(); } else if (c == '\0') { // 结束符号 token_type = 0; } else { // 非法字符 printf("Error: invalid character '%c' at position %d.\n", c, code_index - 1); exit(1); } } int main() { // 读入代码字符串 printf("请输入一段C语言程序:\n"); fgets(code, MAX_CODE_LEN, stdin); // 词法分析 code_index = 0; while (1) { next_token(); if (token_type == 0) { break; } printf("(%s, %s)\n", token_type_str[token_type], token_value_str[token_type]); } return 0; } ``` 我们使用Dev-C++编写并运行上述程序,输入以下代码进行测试: ```c int main() { char c = 56; int a = 1; int bb_b1 = 7; if (a > bb_b1) c = 9; else c = 90; while (1) { ; } return 67; } ``` 程序输出结果如下: ``` (KW_INT, int) (IDENT, main) (LPAREN, () (RPAREN, )) (LBRACE, { ) (KW_CHAR, char) (IDENT, c) (ASSIGN, =) (NUM, 56) (SEMI, ;) (KW_INT, int) (IDENT, a) (ASSIGN, =) (NUM, 1) (SEMI, ;) (KW_INT, int) (IDENT, bb_b1) (ASSIGN, =) (NUM, 7) (SEMI, ;) (KW_IF, if) (LPAREN, () (IDENT, a) (GT, >) (IDENT, bb_b1) (RPAREN, )) (IDENT, c) (ASSIGN, =) (NUM, 9) (SEMI, ;) (KW_ELSE, else) (IDENT, c) (ASSIGN, =) (NUM, 90) (SEMI, ;) (KW_WHILE, while) (LPAREN, () (NUM, 1) (RPAREN, )) (LBRACE, { ) (SEMI, ;) (RBRACE, }) (KW_RETURN, return) (NUM, 67) (SEMI, ;) (RBRACE, }) ```
阅读全文

相关推荐

最新推荐

recommend-type

编译原理实验一——C 语言词法分析器设计与实现

本实验“C语言词法分析器设计与实现”旨在深入理解词法分析原理,并掌握如何构建一个能正确处理源程序中单词的程序。 在编译原理中,词法分析器(也称为扫描器)是第一个处理源代码的组件。它的主要任务是: 1. **...
recommend-type

词法分析示例程序(C语言编写,针对PL/0语言)

词法分析是编译器设计中的重要组成部分,它在编译过程中扮演着第一个阶段的角色。词法分析器,也称为扫描器,其...这个C语言编写的词法分析程序展示了如何手动实现这一过程,对于理解编译器的内部工作原理非常有帮助。
recommend-type

编译原理词法分析C语言实现实验报告(含源码)

《编译原理词法分析C语言实现实验报告》 在计算机科学中,编译原理是研究编程语言从源代码转换成机器可执行代码的过程的关键领域。词法分析是编译器的第一步,它负责识别源代码中的基本构建块,即单词符号。本实验...
recommend-type

编译原理实验报告——词法分析器

**编译原理实验报告——词法分析器** 在编译原理中,词法分析是编译过程...总结来说,本次实验旨在通过实现词法分析器,增强对编译原理的理解,提升实践操作技能,同时暴露了程序的一些局限性,为后续改进提供了方向。
recommend-type

词法分析设计 编译原理实验指导书

在这个实验中,学生将使用VC++/VB/JAVA等编程语言实现对C语言子集的源程序进行词法分析。 在编译原理中,词法分析的主要任务是识别源代码中的标识符(如变量名)、关键字、常量(数字、字符串)、运算符、分隔符等...
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。