python 贝叶斯优化xgboosting回归预测
时间: 2023-05-28 18:06:19 浏览: 159
贝叶斯优化是一种优化算法,用于寻找最优的超参数组合。在xgboosting回归预测中,我们可以使用贝叶斯优化来优化模型的超参数,例如树的最大深度、学习率、正则化参数等。
以下是使用贝叶斯优化xgboosting回归预测的步骤:
1. 导入必要的库和数据集
```python
import xgboost as xgb
from bayes_opt import BayesianOptimization
from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
data = load_boston()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
```
2. 定义模型训练函数
```python
def xgb_cv(max_depth, learning_rate, n_estimators, gamma, min_child_weight, subsample, colsample_bytree):
params = {
"objective": "reg:squarederror",
"eval_metric": "rmse",
"max_depth": int(round(max_depth)),
"learning_rate": learning_rate,
"n_estimators": int(round(n_estimators)),
"gamma": gamma,
"min_child_weight": min_child_weight,
"subsample": subsample,
"colsample_bytree": colsample_bytree,
"seed": 42
}
dtrain = xgb.DMatrix(X_train, label=y_train)
cv_result = xgb.cv(params, dtrain, num_boost_round=1000, nfold=5, early_stopping_rounds=50, verbose_eval=None, seed=42)
return -cv_result["test-rmse-mean"].iloc[-1]
```
3. 定义超参数范围
```python
pbounds = {
"max_depth": (3, 10),
"learning_rate": (0.01, 0.3),
"n_estimators": (100, 1000),
"gamma": (0, 5),
"min_child_weight": (1, 10),
"subsample": (0.5, 1),
"colsample_bytree": (0.5, 1)
}
```
4. 运行贝叶斯优化
```python
optimizer = BayesianOptimization(f=xgb_cv, pbounds=pbounds, random_state=42)
optimizer.maximize(init_points=10, n_iter=30)
```
5. 训练最优的模型并进行预测
```python
best_params = optimizer.max["params"]
best_params["max_depth"] = int(round(best_params["max_depth"]))
best_params["n_estimators"] = int(round(best_params["n_estimators"]))
model = xgb.XGBRegressor(**best_params)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("MSE: {:.2f}".format(mse))
```
通过贝叶斯优化,我们可以得到最优的超参数组合,从而提高模型的预测性能。
阅读全文