while iter<=iterMax if iter<iterMax/2 pro = 0.5; else pro = 0.05; end
时间: 2024-02-10 09:50:50 浏览: 46
这是一个简单的循环结构,在 MATLAB 编程语言中。假设 `iter` 和 `iterMax` 分别表示当前迭代次数和最大迭代次数,代码的作用是根据迭代次数的不同,给变量 `pro` 赋不同的值。
具体来说,如果当前迭代次数 `iter` 小于最大迭代次数 `iterMax` 的一半,那么变量 `pro` 的值为 0.5,否则为 0.05。可以看出,这个代码片段的作用是在迭代过程中动态地调整某个变量的值,以实现更好的算法效果。
相关问题
如何生成下面这段代码的成本迭代图,%% 用户自定义数据 [customerPosition,distriCenterPosition,sendPosition,distriCenterConstantCost,distriCenterVolume,... distriCenterManageCost,sendToDistriCenterPer,distriCenterToCustomerPer,customerRequirement] = DataFunction; probabilityMat = [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]; % probabilityMat = ones(1,7)/7; % probabilityMat = [0 0 0 1 0 0 0]; %% 用户不可修改数据 M = size(distriCenterPosition,1); %配送中心的数目 N = size(customerPosition,1); %客户的数目 if length(probabilityMat)~=M || abs(sum(probabilityMat)-1)>=1e-6 error('参数probabilityMat的大小与配送中心数目不一致或probabilityMat加和不为1'); end %% 遗传算法数据 populationNumber = 50; %种群数量 pro = 0.1; %变异概率 populationMat = cell(populationNumber,4); %种群数据矩阵 iter = 1; %当前迭代次数 iterMax = 3000; % 最大迭代次数 bestValue = inf; bestValueNow = inf; bestValueMat = zeros(populationNumber,1); bestSolve = cell(1,4); %% 初始化个体 populationMat = InitializeIndividuality(populationMat,populationNumber,M,N,probabilityMat,customerRequirement,distriCenterVolume,distriCenterPosition,customerPosition); while iter<=iterMax if iter<iterMax/2 pro = 0.5; else pro = 0.05; end %% 计算适应度 p = CalcuFitCapacity(populationMat,sendPosition,distriCenterPosition,sendToDistriCenterPer,customerPosition,distriCenterToCustomerPer,distriCenterConstantCost,distriCenterManageCost,populationNumber); %% 选择 populationMat = SelectionFunction(populationMat,populationNumber,p); %% 交叉 populationMat = CrossFunction(populationMat,populationNumber,customerRequirement,distriCenterVolume,distriCenterPosition,customerPosition,N); %% 变异 populationMat = HeteromorphosisFunction(populationMat,probabilityMat,pro,populationNumber,M,N,customerRequirement,distriCenterVolume,distriCenterPosition,customerPosition); %% 寻找最优解 [bestValueNow,bestSolveNow] = CalcuBestIndividuiality(populationMat,populationNumber,sendPosition,distriCenterPosition,sendToDistriCenterPer,customerPosition,distriCenterToCustomerPer,distriCenterConstantCost,distriCenterManageCost); if bestValueNow<bestValue bestValueMat(iter) = bestValueNow; bestValue = bestValueNow; bestSolve = bestSolveNow; else bestValueMat(iter) = bestValue; end iter = iter+1;
您可以使用 MATLAB 自带的 plot 函数来绘制成本迭代图。具体的步骤如下:
1. 定义迭代次数和最优解的数组:
```
iterMax = 3000;
bestValueMat = zeros(iterMax, 1);
```
2. 在循环中记录每次迭代的最优解:
```
for iter = 1:iterMax
...
[bestValueNow, bestSolveNow] = CalcuBestIndividuiality(populationMat,populationNumber,sendPosition,distriCenterPosition,sendToDistriCenterPer,customerPosition,distriCenterToCustomerPer,distriCenterConstantCost,distriCenterManageCost);
if bestValueNow < bestValue
bestValue = bestValueNow;
bestSolve = bestSolveNow;
end
bestValueMat(iter) = bestValue;
iter = iter + 1;
end
```
3. 使用 plot 函数绘制成本迭代图:
```
plot(1:iterMax, bestValueMat);
title('Cost Iteration Plot');
xlabel('Iteration');
ylabel('Cost');
```
这样就可以生成成本迭代图了。您可以将这段代码放在 ChitGPT 中执行,然后与 ChitGPT 对话,让它为您生成成本迭代图。
使用matlab编写pso算法,适应度函数为:f=0.5/((100.0y)/(0.1/y + 50.0)^2 + 10.0xz^2 - 100.0xz^3) + (0.5(0.037/(x*y)^(1/2))^(1/2))/z^(1/2)
这里是一个简单的PSO算法的Matlab代码,适应度函数已经被定义为f,参数设置如下:
- 粒子数目:particleNum
- 迭代次数:iterMax
- 惯性权重:w
- 学习因子:c1、c2
```matlab
% 定义适应度函数
f = @(x,y,z) 0.5/((100.0*y)/(0.1/y + 50.0)^2 + 10.0*x*z^2 - 100.0*x*z^3) + (0.5*(0.037/(x*y)^(1/2))^(1/2))/z^(1/2);
% 初始化PSO算法参数
particleNum = 50; % 粒子数目
iterMax = 100; % 迭代次数
w = 0.8; % 惯性权重
c1 = 2.0; % 学习因子1
c2 = 2.0; % 学习因子2
% 初始化粒子位置和速度
x = rand(particleNum, 1)*10;
y = rand(particleNum, 1)*10;
z = rand(particleNum, 1)*10;
vx = rand(particleNum, 1)*10 - 5;
vy = rand(particleNum, 1)*10 - 5;
vz = rand(particleNum, 1)*10 - 5;
% 初始化粒子最优位置和全局最优位置
pBestX = x;
pBestY = y;
pBestZ = z;
pBestVal = f(x, y, z);
gBestVal = min(pBestVal);
gBestIndex = find(pBestVal == gBestVal);
% 开始迭代
for iter = 1:iterMax
% 更新粒子速度和位置
for i = 1:particleNum
vx(i) = w*vx(i) + c1*rand()*(pBestX(i)-x(i)) + c2*rand()*(pBestX(gBestIndex)-x(i));
vy(i) = w*vy(i) + c1*rand()*(pBestY(i)-y(i)) + c2*rand()*(pBestY(gBestIndex)-y(i));
vz(i) = w*vz(i) + c1*rand()*(pBestZ(i)-z(i)) + c2*rand()*(pBestZ(gBestIndex)-z(i));
x(i) = x(i) + vx(i);
y(i) = y(i) + vy(i);
z(i) = z(i) + vz(i);
% 边界处理
x(i) = min(max(x(i), 0), 10);
y(i) = min(max(y(i), 0), 10);
z(i) = min(max(z(i), 0), 10);
% 更新最优位置
val = f(x(i), y(i), z(i));
if val < pBestVal(i)
pBestX(i) = x(i);
pBestY(i) = y(i);
pBestZ(i) = z(i);
pBestVal(i) = val;
end
if val < gBestVal
gBestVal = val;
gBestIndex = i;
end
end
% 输出迭代结果
fprintf("Iteration %d: gBestVal = %f, gBestX = %f, gBestY = %f, gBestZ = %f\n", iter, gBestVal, pBestX(gBestIndex), pBestY(gBestIndex), pBestZ(gBestIndex));
end
```
阅读全文