transformer+预训练模型
时间: 2024-03-13 09:41:25 浏览: 136
Transformer预训练语言模型
Transformer是一种基于自注意力机制的神经网络模型,广泛应用于自然语言处理任务中。它在处理序列数据时能够捕捉全局依赖关系,具有较好的建模能力。
预训练模型是指在大规模无标注数据上进行预训练的模型。通过在大量数据上学习语言模型,预训练模型可以学习到丰富的语言知识和语义表示。其中,BERT、GPT和XLNet等都是常见的预训练模型。
Transformer+预训练模型是将Transformer模型与预训练模型相结合的方法。通过在大规模数据上进行预训练,预训练模型可以学习到丰富的语义表示,然后将这些表示应用于具体的任务中,如文本分类、命名实体识别等。Transformer作为预训练模型的基础结构,能够有效地处理长距离依赖关系,提升了模型在序列任务中的性能。
阅读全文