#要输出的全部字符 #All characters to be output a=['P','A','T','e','s','t'] b={} #在输入字符串中统计需要的字符 #Count the required characters in the input string for i in input(): if i in a and i not in b: b[i]=0 if i in a: b[i]=b[i]+1 #按要求输出 #Output as required while sum(list(b.values()))>0: for j in a: #字符必须在字典中,否则会非零返回 #Character must be in dictionary if j in b: if b[j]>0: print(j,end='') b[j]=b[j]-1
时间: 2024-04-18 15:27:16 浏览: 98
这段代码实现了与之前相同的功能,即照'PATest'字母顺序排序输出。代码逻辑如下:
1. 创建一个列表`a`,包含了要输出的全部字符'P', 'A', 'T', 'e', 's', 't'。
2. 创建一个空的字典`b`,用来统计输入字符串中需要的字符的个数。
3. 遍历输入字符串的每个字符:
- 如果字符在列表`a`中,并且不在字典`b`中,将该字符添加到字典`b`中,初始计数器为0。
- 如果字符在列表`a`中,将该字符的计数器加1。
4. 使用一个循环,当字典`b`中所有字符的计数器之和大于0时执行:
- 遍历列表`a`中的每个字符:
- 如果字符在字典`b`中:
- 如果字符的计数器大于0,输出该字符,并将计数器减1。
这段代码与之前的代码逻辑相同,只是使用了字典来统计字符的个数。如果需要了解更多信息,请提供更具体的问题。
相关问题
用C++编写程序,实现以下问题2、题目ID Codes(POJ1146) Time Limit: 1000MS Memory Limit: 10000K 描述: It is 2084 and the year of Big Brother has finally arrived, albeit a century late. In order to exercise greater control over its citizens and thereby to counter a chronic breakdown in law and order, the Government decides on a radical measure--all citizens are to have a tiny microcomputer surgically implanted in their left wrists. This computer will contains all sorts of personal information as well as a transmitter which will allow people's movements to be logged and monitored by a central computer. (A desirable side effect of this process is that it will shorten the dole queue for plastic surgeons.) An essential component of each computer will be a unique identification code, consisting of up to 50 characters drawn from the 26 lower case letters. The set of characters for any given code is chosen somewhat haphazardly. The complicated way in which the code is imprinted into the chip makes it much easier for the manufacturer to produce codes which are rearrangements of other codes than to produce new codes with a different selection of letters. Thus, once a set of letters has been chosen all possible codes derivable from it are used before changing the set. For example, suppose it is decided that a code will contain exactly 3 occurrences of a', 2 of b' and 1 of c', then three of the allowable 60 codes under these conditions are: abaabc abaacb ababac These three codes are listed from top to bottom in alphabetic order. Among all codes generated with this set of characters, these codes appear consecutively in this order. Write a program to assist in the issuing of these identification codes. Your program will accept a sequence of no more than 50 lower case letters (which may contain repeated characters) and print the successor code if one exists or the message No Successor' if the given code is the last in the sequence for that set of characters. 输入: Input will consist of a series of lines each containing a string representing a code. The entire file will be terminated by a line consisting of a single #. 输出: Output will consist of one line for each code read containing the successor code or the words 'No Successor'. 样例输入 abaacb cbbaa # 样例输出 ababac No Successor
以下是使用C++编写的程序,可以解决该问题:
```c++
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int main()
{
char str[55];
while(cin >> str && str[0] != '#')
{
if(next_permutation(str, str + strlen(str)))
cout << str << endl;
else
cout << "No Successor" << endl;
}
return 0;
}
```
首先,我们定义了一个字符数组 `str` 来存储输入的字符串。
然后,在一个循环中不断读入字符串,直到读入单独的一个 '#' 字符为止。
对于每个字符串,我们可以使用 `next_permutation` 函数来找到它的下一个排列。如果找到了下一个排列,则输出它;否则输出 "No Successor"。
需要注意的是,我们必须将 `str` 的长度作为第二个参数传递给 `next_permutation` 函数,否则它将无法正确地处理含有重复字符的字符串。
You have two binary strings � a and � b of length � n. You would like to make all the elements of both strings equal to 0 0. Unfortunately, you can modify the contents of these strings using only the following operation: You choose two indices � l and � r ( 1 ≤ � ≤ � ≤ � 1≤l≤r≤n); For every � i that respects � ≤ � ≤ � l≤i≤r, change � � a i to the opposite. That is, � � : = 1 − � � a i :=1−a i ; For every � i that respects either 1 ≤ � < � 1≤i<l or � < � ≤ � r<i≤n, change � � b i to the opposite. That is, � � : = 1 − � � b i :=1−b i . Your task is to determine if this is possible, and if it is, to find such an appropriate chain of operations. The number of operations should not exceed � + 5 n+5. It can be proven that if such chain of operations exists, one exists with at most � + 5 n+5 operations. Input Each test consists of multiple test cases. The first line contains a single integer � t ( 1 ≤ � ≤ 1 0 5 1≤t≤10 5 ) — the number of test cases. The description of test cases follows. The first line of each test case contains a single integer � n ( 2 ≤ � ≤ 2 ⋅ 1 0 5 2≤n≤2⋅10 5 ) — the length of the strings. The second line of each test case contains a binary string � a, consisting only of characters 0 and 1, of length � n. The third line of each test case contains a binary string � b, consisting only of characters 0 and 1, of length � n. It is guaranteed that sum of � n over all test cases doesn't exceed 2 ⋅ 1 0 5 2⋅10 5 . Output For each testcase, print first "YES" if it's possible to make all the elements of both strings equal to 0 0. Otherwise, print "NO". If the answer is "YES", on the next line print a single integer � k ( 0 ≤ � ≤ � + 5 0≤k≤n+5) — the number of operations. Then � k lines follows, each contains two integers � l and � r ( 1 ≤ � ≤ � ≤ � 1≤l≤r≤n) — the description of the operation. If there are several correct answers, print any of them.
这道题目的意思是给定两个长度为n的01字符串a和b,每次操作可以选择一个区间[l, r],将a中该区间内的元素取反,将b中该区间外的元素取反,问是否能通过有限次操作将a和b都变成全0。
思路:首先考虑每次操作对a和b的影响,发现每次操作不会改变a和b的异同性质,即a和b中相同位置的元素要么都取反,要么都不变。因此我们可以将a和b的不同位置分别记录下来,然后将它们的异同性质分开考虑。对于a和b中相同位置的元素,如果它们不同,那么无论怎么操作都不可能使它们都变成0;如果它们相同,那么我们只需要将它们都变成0即可。对于a和b中不同位置的元素,我们可以将它们分别记录下来,然后我们需要将它们都变成0,那么考虑对于每一个不同位置,我们需要将它所在的位置变成0,同时我们需要保证其他不同位置元素不受影响,因此我们可以将每个不同位置拆分成两个区间[l, r],分别表示需要将a中[l, r]变成0和需要将b中[l, r]变成0。
具体实现时,我们可以先将a和b中不同的位置分别记录下来,然后对于a和b中相同位置的元素,如果它们都是1,那么我们需要将它们变成0,此时操作数加1;对于a和b中不同位置的元素,我们可以先将每个不同位置拆分成两个区间[l, r],分别表示需要将a中[l, r]变成0和需要将b中[l, r]变成0。然后我们可以通过贪心的思想,将所有需要变成0的区间按照左端点排序,然后依次进行操作,直到把所有的区间变成0。具体实现时,我们可以将需要变成0的区间看成点,如果两个区间有重叠,那么它们之间就有一条边,我们只需要求出这个图的一个完美匹配即可。
时间复杂度为O(nlogn+n),其中n为字符串长度。
阅读全文