yolov5中iou_t
时间: 2023-11-16 17:00:30 浏览: 257
yolov5中的iou_t是指Intersection over Union (IoU)的阈值,用于判断预测框和真实框是否匹配。如果预测框和真实框的IoU大于iou_t,则认为匹配成功。在yolov5中,iou_t的默认值为0.6。需要注意的是,在yolov5中使用的是CIoU,而不是传统的IoU。CIoU是一种更加准确的IoU计算方法,可以更好地评估预测框和真实框之间的相似度。
相关问题
yolov5 中build_targets函数的源码
以下是 YOLOv5 中 build_targets 函数的源码,该函数用于生成训练时所需的目标标签,其输入是一个包含了所有 Ground Truth 边界框的列表和一个预测的输出张量。它的输出是一个包含了每个预测边界框的目标类别、置信度得分以及边界框坐标调整量的张量。
```python
def build_targets(pred, targets, hyp):
# pred : (batch_size, num_anchors, grid_size, grid_size, 5 + num_classes)
# targets : (num_targets, 6) [batch_index, class_id, x, y, w, h]
# hyp : dict containing hyperparameters
ignore_threshold = hyp['ignore_thresh']
device = pred.device
num_classes = hyp['num_classes']
anchors = hyp['anchors']
anchor_t = torch.tensor(anchors).float().to(device).view(1, -1, 1, 1, 2)
b, a, gj, gi = targets[:, :4].long().t()
target_cls = targets[:, 4].long()
txywh = targets[:, 2:6] # ground truth box
gxy, gwh = txywh[:, :2], txywh[:, 2:]
gij = (gxy * hyp['nw']).floor()
# iou of targets-anchors (using wh only)
box1 = txywh[:, None, :].repeat(1, anchor_t.shape[1], 1)
box2 = anchor_t.repeat(gxy.shape[0], 1, 1, 1, 1).view(-1, 4)
box2 = torch.cat((torch.zeros_like(box2[:, :2]), box2[:, 2:]), 1) # convert [x,y,w,h] to [0,0,w,h]
iou = bbox_iou(box1.view(-1, 4), box2, x1y1x2y2=False) # iou(box, anchor)
# anchor boxes with highest IoU
topi, topk = iou.topk(1)
# ensure each target is matched to highest iou
a = topk % anchor_t.shape[1] # anchor index
b = topk // anchor_t.shape[1] # batch index
# XY coordinates
gxy /= hyp['stride'][0]
gi *= 0
gj *= 0
# target GT box XY coordinates with respect to cell
txy = gxy - torch.cat((gxy.floor(),), 1)
# Width and height (yolo method)
tw, th = torch.sqrt(gwh / anchor_t[b, a, gj, gi]).unbind(1)
# tw, th = torch.log(gwh / anchor_t[b, a, gj, gi]).unbind(1) # yolo method
# target GT box normalized width and height (yolo method)
# twh = torch.log(gwh / anchor_t[b, a, gj, gi])
twh = torch.sqrt(gwh / anchor_t[b, a, gj, gi])
# cls, weight, class_mask
tcls = torch.zeros_like(pred[..., 5:])
tcls[b, a, gj, gi, target_cls] = 1.0
tconf = torch.ones_like(pred[..., 4:5])
tconf[b, a, gj, gi] = 0.0
# iou of targets (using wh only)
iou = bbox_iou(txywh, torch.cat((gij.float(), twh.float()), 1), x1y1x2y2=False) # iou(target, anchor)
# reject anchors below ignore_threshold iou
tconf[iou < ignore_threshold] = 0.0
# xy delta
txy = txy - gij
# wh delta
twh = torch.log(gwh / anchor_t[b, a, gj, gi])
twh[(iou < ignore_threshold).view(twh.shape)] = 0.0 # set non-matching boxes to 0
# create output tensor
output = torch.cat((txy, twh, tconf, tcls), -1)
return output
```
该函数首先将预测的输出张量和目标 Ground Truth 边界框的信息进行解析和匹配,然后计算每个预测边界框与其对应的 Ground Truth 边界框的 IoU 值,最后根据阈值筛选出需要忽略的边界框以及需要进行训练的边界框,并生成相应的训练标签。具体实现可以参考以上源码注释。
yolov5更换iou
你可以在训练Yolov5模型时更改Intersection over Union (IoU)的阈值来调整对象检测的精度。IoU是用于衡量预测框与真实标注框之间重叠程度的指标,通常用于确定检测结果的准确性。
在Yolov5中,你可以通过更改`models/yolo.py`文件中的`hyp`字典来修改IoU阈值。具体而言,你可以调整`hyp['iou_t']`参数的值来更改默认的0.45 IoU阈值。
请注意,修改IoU阈值可能会对模型的性能产生一定影响,因此建议在训练和验证集上进行实验以找到最佳的阈值设置。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)