python代码实现计算用KNN做的红酒分类问题的各类别的AUC,绘制ROC
时间: 2024-11-13 11:40:39 浏览: 27
在Python中,计算基于K-最近邻(KNN)算法的红酒分类问题中的AUC(曲线下面积),并绘制ROC曲线通常需要使用scikit-learn库。首先,你需要有一个训练好的KNN模型和对应的标签数据,然后按照以下步骤操作:
1. 导入所需的库:
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
```
2. 加载和准备数据:
```python
# 假设你有名为data.csv的数据文件,包含特征X和目标变量y
data = pd.read_csv('data.csv')
X = data.drop('target', axis=1)
y = data['target']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 训练KNN模型:
```python
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
```
4. 预测概率分数(对于二分类问题):
```python
y_scores = knn.predict_proba(X_test)[:, 1] # 第二列对应正类的概率
```
5. 计算ROC曲线和AUC:
```python
fpr, tpr, _ = roc_curve(y_test, y_scores)
auc_score = auc(fpr, tpr)
```
6. 绘制ROC曲线:
```python
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label=f"KNN (AUC = {auc_score:.2f})", lw=2)
plt.plot([0, 1], [0, 1], 'k--') # 对角线基准线
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristic (ROC)")
plt.legend(loc="lower right")
plt.show()
```
阅读全文