oracle12卸载 linux

时间: 2024-01-16 16:01:08 浏览: 114
在Linux系统中卸载Oracle 12可能涉及以下步骤: 1. 登录到拥有root权限的账户。 2. 停止Oracle数据库实例和监听器服务。 3. 使用sqlplus工具连接到数据库实例,执行shutdown命令关闭数据库实例。 4. 依次停止监听器服务。 5. 使用rpm命令卸载Oracle软件包。 6. 删除Oracle实例数据库和监听器所在的目录。 7. 删除Oracle安装过程中创建的用户和用户组。 8. 删除Oracle在/etc目录下的配置文件。 9. 删除Oracle在/var目录下的日志文件和临时文件。 10. 删除Oracle在/opt目录下的软件安装目录。 11. 清理系统环境变量中与Oracle相关的配置。 12. 重启系统,确保Oracle软件已完全卸载。 需要特别注意的是,在执行以上步骤时需要谨慎,确保不会误删系统关键文件或其他重要数据,并及时备份需要保留的数据。另外,根据具体的Linux发行版本和Oracle安装方式,卸载步骤可能会有所差异,建议提前查阅相关文档或咨询技术支持。 卸载Oracle 12是一个较为复杂的过程,需要系统管理员具备一定的Linux和Oracle知识和经验。如果不确定如何正确操作,建议寻求专业技术支持,以避免造成不必要的损失。
相关问题

linux oracle数据库卸载

要卸载Linux上的Oracle数据库,您可以按照以下步骤进行操作: 1. 首先,登录到Linux系统中的root用户或具有sudo权限的用户。 2. 停止所有与Oracle数据库相关的服务。您可以使用以下命令停止Oracle数据库实例和监听器: ``` systemctl stop oracle ``` 3. 删除Oracle数据库实例和相关文件。要删除数据库实例,请运行以下命令: ``` dbca -silent -deleteDatabase -sourceDB <database_name> [-sysDBAUserName <username>] [-sysDBAPassword <password>] ``` 请将`<database_name>`替换为要删除的数据库实例的名称,可以选择指定`-sysDBAUserName`和`-sysDBAPassword`选项以提供SYSDBA用户的凭据。 4. 删除Oracle软件安装目录。默认情况下,Oracle软件安装在`/opt/oracle`目录下。您可以使用以下命令删除该目录及其内容: ``` rm -rf /opt/oracle ``` 5. 删除相关的环境变量。编辑`/etc/profile`文件,删除以下行(如果存在): ``` export ORACLE_HOME=/opt/oracle export PATH=$PATH:$ORACLE_HOME/bin ``` 然后保存并关闭文件。 6. 最后,重新启动系统以使更改生效: ``` reboot ```

oracle11g完全卸载Linux

卸载Oracle 11g数据库在Linux系统上通常需要几个步骤: 1. **停止服务**: 首先,关闭所有相关的Oracle服务,如`sqlplus`, `listener`, 和`database`服务。你可以通过运行命令`sudo service oracle_database stop`来完成。 2. **移除环境变量**: 删除Oracle相关的环境变量,如`ORACLE_HOME`、`PATH`等,以避免系统误用已卸载的软件。编辑`~/.bashrc`或`~/.bash_profile`,并移除这些设置。 3. **删除数据库文件**: 使用`$ORACLE_HOME/bin/rmcmd`工具或直接进入数据目录(如`$ORACLE_HOME/data`),手动删除或使用`rm -rf`(谨慎操作,避免丢失重要数据)清除所有的数据库文件和日志文件。 4. **卸载数据库产品**: 运行`$ORACLE_HOME/bin/uninstall_db.sh`脚本,按照提示逐步执行。注意备份数据和配置文件之前再进行这个步骤。 5. **清理注册表**: 清理启动路径和初始化参数文件(比如`oraInst.loc`),可以使用`crsctl terminate`终止CRS实例,然后编辑`/etc/oraInst.loc`和`/etc/init.d/oracle`文件。 6. **更新RPM包列表**: 使用`yum remove`或`apt-get purge`来从系统的包管理器中卸载Oracle的相关RPM或DEB包。 7. **检查残留文件**: 完成上述步骤后,检查系统是否有Oracle的残留文件或链接,例如`/etc/oratab`或`/var/lib/oracle`. 8. **确认卸载**: 最后,检查Oracle的文档和log文件以确保所有相关组件都被卸载干净。
阅读全文

相关推荐

最新推荐

recommend-type

oracle停止数据库后linux完全卸载oracle的详细步骤

在Linux系统中,完全卸载Oracle数据库是一个涉及多个步骤的过程,确保所有与Oracle相关的组件和服务都被正确清理。在开始卸载之前,首先需要确保数据库已经安全地停止运行,以防止数据丢失或系统不稳定。以下是一个...
recommend-type

如何卸载linux自带openjdk并安装sun jdk

以下是一个详细的步骤指南,讲解如何卸载Linux系统上的OpenJDK并安装Oracle JDK。 首先,我们需要确认当前系统上已安装的JDK版本。在终端中输入以下命令: ```bash java -version ``` 这将显示系统上的Java版本,如...
recommend-type

Oracle Linux更新Yum源

"Oracle Linux更新Yum源详解" Oracle Linux 是一个基于 Red Hat Enterprise Linux 源代码的操作系统,具有高性能、可靠性和安全性。Yum(Yellow dog Updater, Modified)是一个命令行的包管理器,用于管理 RPM ...
recommend-type

linux安装oracle基本linux操作学习

`yum`工具是Linux中的包管理器,用于安装、更新和卸载软件。`tar`命令用于处理`.tar`文件,`gunzip`和`gzip`处理`.gz`文件,`unzip`解压缩`.zip`文件。例如,`tar -xvf file.tar`解压`.tar`文件,`gzip -6 file.tar...
recommend-type

tables-3.6.1-cp39-cp39-win_amd64.whl

tables-3.6.1-cp39-cp39-win_amd64.whl
recommend-type

全国江河水系图层shp文件包下载

资源摘要信息:"国内各个江河水系图层shp文件.zip" 地理信息系统(GIS)是管理和分析地球表面与空间和地理分布相关的数据的一门技术。GIS通过整合、存储、编辑、分析、共享和显示地理信息来支持决策过程。在GIS中,矢量数据是一种常见的数据格式,它可以精确表示现实世界中的各种空间特征,包括点、线和多边形。这些空间特征可以用来表示河流、道路、建筑物等地理对象。 本压缩包中包含了国内各个江河水系图层的数据文件,这些图层是以shapefile(shp)格式存在的,是一种广泛使用的GIS矢量数据格式。shapefile格式由多个文件组成,包括主文件(.shp)、索引文件(.shx)、属性表文件(.dbf)等。每个文件都存储着不同的信息,例如.shp文件存储着地理要素的形状和位置,.dbf文件存储着与这些要素相关的属性信息。本压缩包内还包含了图层文件(.lyr),这是一个特殊的文件格式,它用于保存图层的样式和属性设置,便于在GIS软件中快速重用和配置图层。 文件名称列表中出现的.dbf文件包括五级河流.dbf、湖泊.dbf、四级河流.dbf、双线河.dbf、三级河流.dbf、一级河流.dbf、二级河流.dbf。这些文件中包含了各个水系的属性信息,如河流名称、长度、流域面积、流量等。这些数据对于水文研究、环境监测、城市规划和灾害管理等领域具有重要的应用价值。 而.lyr文件则包括四级河流.lyr、五级河流.lyr、三级河流.lyr,这些文件定义了对应的河流图层如何在GIS软件中显示,包括颜色、线型、符号等视觉样式。这使得用户可以直观地看到河流的层级和特征,有助于快速识别和分析不同的河流。 值得注意的是,河流按照流量、流域面积或长度等特征,可以被划分为不同的等级,如一级河流、二级河流、三级河流、四级河流以及五级河流。这些等级的划分依据了水文学和地理学的标准,反映了河流的规模和重要性。一级河流通常指的是流域面积广、流量大的主要河流;而五级河流则是较小的支流。在GIS数据中区分河流等级有助于进行水资源管理和防洪规划。 总而言之,这个压缩包提供的.shp文件为我们分析和可视化国内的江河水系提供了宝贵的地理信息资源。通过这些数据,研究人员和规划者可以更好地理解水资源分布,为保护水资源、制定防洪措施、优化水资源配置等工作提供科学依据。同时,这些数据还可以用于教育、科研和公共信息服务等领域,以帮助公众更好地了解我国的自然地理环境。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keras模型压缩与优化:减小模型尺寸与提升推理速度

![Keras模型压缩与优化:减小模型尺寸与提升推理速度](https://dvl.in.tum.de/img/lectures/automl.png) # 1. Keras模型压缩与优化概览 随着深度学习技术的飞速发展,模型的规模和复杂度日益增加,这给部署带来了挑战。模型压缩和优化技术应运而生,旨在减少模型大小和计算资源消耗,同时保持或提高性能。Keras作为流行的高级神经网络API,因其易用性和灵活性,在模型优化领域中占据了重要位置。本章将概述Keras在模型压缩与优化方面的应用,为后续章节深入探讨相关技术奠定基础。 # 2. 理论基础与模型压缩技术 ### 2.1 神经网络模型压缩
recommend-type

MTK 6229 BB芯片在手机中有哪些核心功能,OTG支持、Wi-Fi支持和RTC晶振是如何实现的?

MTK 6229 BB芯片作为MTK手机的核心处理器,其核心功能包括提供高速的数据处理、支持EDGE网络以及集成多个通信接口。它集成了DSP单元,能够处理高速的数据传输和复杂的信号处理任务,满足手机的多媒体功能需求。 参考资源链接:[MTK手机外围电路详解:BB芯片、功能特性和干扰滤波](https://wenku.csdn.net/doc/64af8b158799832548eeae7c?spm=1055.2569.3001.10343) OTG(On-The-Go)支持是通过芯片内部集成功能实现的,允许MTK手机作为USB Host与各种USB设备直接连接,例如,连接相机、键盘、鼠标等
recommend-type

点云二值化测试数据集的详细解读

资源摘要信息:"点云二值化测试数据" 知识点: 一、点云基础知识 1. 点云定义:点云是由点的集合构成的数据集,这些点表示物体表面的空间位置信息,通常由三维扫描仪或激光雷达(LiDAR)生成。 2. 点云特性:点云数据通常具有稠密性和不规则性,每个点可能包含三维坐标(x, y, z)和额外信息如颜色、反射率等。 3. 点云应用:广泛应用于计算机视觉、自动驾驶、机器人导航、三维重建、虚拟现实等领域。 二、二值化处理概述 1. 二值化定义:二值化处理是将图像或点云数据中的像素或点的灰度值转换为0或1的过程,即黑白两色表示。在点云数据中,二值化通常指将点云的密度或强度信息转换为二元形式。 2. 二值化的目的:简化数据处理,便于后续的图像分析、特征提取、分割等操作。 3. 二值化方法:点云的二值化可能基于局部密度、强度、距离或其他用户定义的标准。 三、点云二值化技术 1. 密度阈值方法:通过设定一个密度阈值,将高于该阈值的点分类为前景,低于阈值的点归为背景。 2. 距离阈值方法:根据点到某一参考点或点云中心的距离来决定点的二值化,距离小于某个值的点为前景,大于的为背景。 3. 混合方法:结合密度、距离或其他特征,通过更复杂的算法来确定点的二值化。 四、二值化测试数据的处理流程 1. 数据收集:使用相应的设备和技术收集点云数据。 2. 数据预处理:包括去噪、归一化、数据对齐等步骤,为二值化处理做准备。 3. 二值化:应用上述方法,对预处理后的点云数据执行二值化操作。 4. 测试与验证:采用适当的评估标准和测试集来验证二值化效果的准确性和可靠性。 5. 结果分析:通过比较二值化前后点云数据的差异,分析二值化效果是否达到预期目标。 五、测试数据集的结构与组成 1. 测试数据集格式:文件可能以常见的点云格式存储,如PLY、PCD、TXT等。 2. 数据集内容:包含了用于测试二值化算法性能的点云样本。 3. 数据集数量和多样性:根据实际应用场景,测试数据集应该包含不同类型、不同场景下的点云数据。 六、相关软件工具和技术 1. 点云处理软件:如CloudCompare、PCL(Point Cloud Library)、MATLAB等。 2. 二值化算法实现:可能涉及图像处理库或专门的点云处理算法。 3. 评估指标:用于衡量二值化效果的指标,例如分类的准确性、召回率、F1分数等。 七、应用场景分析 1. 自动驾驶:在自动驾驶领域,点云二值化可用于道路障碍物检测和分割。 2. 三维重建:在三维建模中,二值化有助于提取物体表面并简化模型复杂度。 3. 工业检测:在工业检测中,二值化可以用来识别产品缺陷或确保产品质量标准。 综上所述,点云二值化测试数据的处理是一个涉及数据收集、预处理、二值化算法应用、效果评估等多个环节的复杂过程,对于提升点云数据处理的自动化、智能化水平至关重要。