路由优化算法matlab代码
时间: 2024-12-26 12:20:07 浏览: 7
### 路由优化算法 MATLAB 实现代码示例
#### 基于蝴蝶优化算法的无线传感器网络 (WSN) 安全分簇路由设计
为了实现基于蝴蝶优化算法的安全分簇路由设计,可以按照如下方式编写MATLAB代码:
```matlab
function [bestRoute, bestFitness] = butterflyOptimizationAlgorithm(nodes, maxIter)
% 初始化参数
n = length(nodes); % 节点数量
dim = size(nodes, 2); % 维度数
popSize = 50; % 种群大小
% 随机初始化种群位置和适应度值
population = rand(popSize, dim);
fitnessValues = zeros(1, popSize);
for i = 1:popSize
fitnessValues(i) = evaluateFitness(population(i,:), nodes);
end
% 找出初始最优解
[~, bestIdx] = min(fitnessValues);
bestSolution = population(bestIdx,:);
bestFitness = fitnessValues(bestIdx);
c = 0.1; % 控制因子
p = 0.8; % 发现概率
for iter = 1:maxIter
for i = 1:popSize
r = rand();
if r < p
% 吸引阶段
newSol = attractPhase(population(i,:), bestSolution, c);
else
% 探索阶段
newSol = explorationPhase(population(i,:), population, c);
end
% 计算新解的适应度值
newFit = evaluateFitness(newSol, nodes);
% 更新个体的最佳解
if newFit < fitnessValues(i)
population(i,:) = newSol;
fitnessValues(i) = newFit;
% 更新全局最佳解
if newFit < bestFitness
bestSolution = newSol;
bestFitness = newFit;
end
end
end
disp(['Iteration ', num2str(iter), ': Best Fitness = ', num2str(bestFitness)]);
% 减少发现概率p并调整控制因子c
p = p * exp(-iter / maxIter);
c = c * sqrt(iter / maxIter);
end
bestRoute = bestSolution;
end
% 辅助函数定义
function fitVal = evaluateFitness(sol, nodes)
% 这里应根据具体应用场景定义适应度评价标准
% ...
end
function sol = attractPhase(currentPos, globalBest, c)
% 吸引相位更新规则
sol = currentPos + c * (globalBest - currentPos) .* randn(size(currentPos));
end
function sol = explorationPhase(currentPos, population, c)
% 探索相位更新规则
idx = randi([1, size(population, 1)], 1, 2);
diffVec = population(idx(1), :) - population(idx(2), :);
sol = currentPos + c * diffVec .* randn(size(currentPos));
end
```
此段代码实现了基于蝴蝶优化算法的无线传感器网络安全分簇路由设计方案[^1]。
阅读全文