支持向量机二分类画图

时间: 2023-08-12 15:03:42 浏览: 46
当使用支持向量机(SVM)进行二分类时,可以通过绘制决策边界来可视化分类结果。下面是一个简单的示例代码,用于绘制线性可分离的二分类数据集的SVM决策边界: ```python import numpy as np import matplotlib.pyplot as plt from sklearn import svm # 创建线性可分离的二分类数据集 X = np.array([[1, 2], [2, 1], [2, 3], [3, 2]]) y = np.array([0, 0, 1, 1]) # 创建SVM分类器对象 clf = svm.SVC(kernel='linear') # 训练模型 clf.fit(X, y) # 绘制决策边界 # 确定坐标轴的范围 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 # 生成网格点坐标 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02)) # 预测网格点的标签 Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # 绘制决策边界和训练样本点 plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) # 设置坐标轴标签和标题 plt.xlabel('X1') plt.ylabel('X2') plt.title('SVM Classification') # 显示图形 plt.show() ``` 上述代码中,首先创建了一个线性可分离的二分类数据集(X和y)。然后,使用`svm.SVC`创建了一个SVM分类器对象,并使用`fit`方法对模型进行训练。接下来,通过生成网格点坐标和预测网格点的标签,绘制了决策边界和训练样本点。最后,通过调用`show`方法显示图形。 请注意,以上示例代码仅适用于线性可分离的数据集。对于非线性可分离的数据集,可以使用不同的SVM核函数(例如多项式核函数或高斯核函数)来绘制决策边界。

相关推荐

from scipy.io import loadmat import numpy as np import math import matplotlib.pyplot as plt import sys, os import pickle from mnist import load_mnist # 函数定义和画图 # 例子:定义step函数以及画图 def step_function(x): y=x>0 return np.array(y,int) def show_step(x): y=step_function(x) plt.plot(x,y,label='step function') plt.legend(loc="best") x = np.arange(-5.0, 5.0, 0.1) show_step(x) ''' 1. 根据阶跃函数step_function的例子,写出sigmoide和Relu函数的定义并画图。 ''' ''' 2. 定义softmax函数,根据输入x=[0.3,2.9,4.0],给出softmax函数的输出,并对输出结果求和。 ''' #获取mnist数据 def get_data(): (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False) return x_train,t_train,x_test, t_test #c初始化网络结构,network是字典,保存每一层网络参数W和b def init_network(): with open("sample_weight.pkl", 'rb') as f: network = pickle.load(f) return network #字典 ''' 3. 调用get_data和init_network函数, 输出x_train, t_train,x_test,t_test,以及network中每层参数的shape(一共三层) ''' ''' 4. 定义predict函数,进行手写数字的识别。 识别方法: 假设输入手写数字图像为x,维数为784(28*28的图像拉成一维向量), 第一层网络权值为W1(维数784, 50),b1(维数为50),第一层网络输出:z1=sigmoid(x*W1+b2)。 第二层网络权值为W2(维数50, 100),b2(维数为100),第二层网络输出:z2=sigmoid(z1*W2+b2)。 第三层网络权值为W3(维数100, 10),b3(维数为10),第三层网络输出(即识别结果):p=softmax(z2*W3+b3), p是向量,维数为10(类别数),表示图像x属于每一个类别的概率, 例如p=[0, 0, 0.95, 0.05, 0, 0, 0, 0, 0, 0],表示x属于第三类(数字2)的概率为0.95, 属于第四类(数字3)的概率为0.05,属于其他类别的概率为0. 由于x属于第三类的概率最大,因此,x属于第三类。 ''' ''' 5. 进行手写数字识别分类准确度的计算(总体分类精度),输出分类准确度。 例如测试数据数量为100,其中正确分类的数量为92,那么分类精度=92/100=0.92。 '''

分析以下代码#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 'sepal length', 'sepal width', 'petal length', 'petal width' iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度' if __name__ == "__main__": path = 'D:\\iris.data' # 数据文件路径 data = pd.read_csv(path, header=None) x, y = data[range(4)], data[4] y = pd.Categorical(y).codes x = x[[0, 1]] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6) # 分类器 clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr') # clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr') clf.fit(x_train, y_train.ravel()) # 准确率 print (clf.score(x_train, y_train)) # 精度 print ('训练集准确率:', accuracy_score(y_train, clf.predict(x_train))) print (clf.score(x_test, y_test)) print ('测试集准确率:', accuracy_score(y_test, clf.predict(x_test))) # decision_function print ('decision_function:\n', clf.decision_function(x_train)) print ('\npredict:\n', clf.predict(x_train)) # 画图 x1_min, x2_min = x.min() x1_max, x2_max = x.max() x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成网格采样点 grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点 # print 'grid_test = \n', grid_test # Z = clf.decision_function(grid_test) # 样本到决策面的距离 # print Z grid_hat = clf.predict(grid_test) # 预测分类值 grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, grid_hat, shading='auto', cmap=cm_light) plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本 plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中测试集样本 plt.xlabel(iris_feature[0], fontsize=13) plt.ylabel(iris_feature[1], fontsize=13) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.title(u'鸢尾花SVM二特征分类', fontsize=16) plt.grid(b=True, ls=':') plt.tight_layout(pad=1.5) plt.show()

解释如下代码:[a,t] = accellog(m); if isempty(t) || length(t)<=128 continue end % length(t) % L % t(end-L:end) set(p(1),'XData',t(end-L:end),'YData',a(end-L:end,1),'Color',[0 0.4470 0.7410]) set(p(2),'XData',t(end-L:end),'YData',a(end-L:end,2),'Color',[0.8500 0.3250 0.0980]) set(p(3),'XData',t(end-L:end),'YData',a(end-L:end,3),'Color',[0.9290 0.6940 0.1250]) axis([t(end)-1.28 t(end)+1.28 -2*g 2*g]) drawnow set(handles.text17,'String',num2str(roundn(a(end,1),-2))) set(handles.text20,'String',num2str(roundn(a(end,2),-2))) set(handles.text21,'String',num2str(roundn(a(end,3),-2))) % if length(t) <L % at = [zeros(L,3);a]; % at = at(end-L+1:end,:); % else % at = a(end-L+1:end,:); % end at = a(end-L+1:end,:); predActid = predictActivityFromSignalBuffer(at/g, fs, fmean, fstd); TotalData(predActid) = TotalData(predActid)+1; switch(predActid) % 走,上楼,下楼,坐,站,躺 case 1 set(handles.PostureType,'String','走','BackgroundColor',[1 0.75 0]) case 2 set(handles.PostureType,'String','上楼','BackgroundColor',[0 0.6 1]) case 3 set(handles.PostureType,'String','下楼','BackgroundColor',[0.36 1 0.07]) case 4 set(handles.PostureType,'String','坐','BackgroundColor',[1 0.1 0.1]) case 5 set(handles.PostureType,'String','站','BackgroundColor',[0 1 0.82]) case 6 set(handles.PostureType,'String','躺','BackgroundColor',[0.89 0.07 1]) end if predActid == predActidHistory || predActidHistory==-1 ContinuousData(Timecount,predActid) = ContinuousData(Timecount,predActid)+1; else Timecount = Timecount+1; ContinuousData(Timecount,predActid) = 1; end

最新推荐

recommend-type

基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip

基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip
recommend-type

基于python实现树莓派和传感器的植物生长环境评估信息系统

【作品名称】:基于python实现树莓派和传感器的植物生长环境评估信息系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于python实现树莓派和传感器的植物生长环境评估信息系统
recommend-type

优质资源,Yearning Mysql SQL审核平台

Yearning Mysql SQL审核平台(使用go语言)
recommend-type

c语言课程设计-职工资源管理系统.rar

void displayMenu() { printf("\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n"); printf("+ 职工资源管理系统 +\n"); printf("+ +\n"); printf("+ 1. 录入职工信息 +\n"); printf("+ 2. 显示全部职工信息 +\n"); printf("+ 3. 根据工号查询
recommend-type

华为OD机试D卷 - 来自异国的客人 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。