###在这里填入代码### def gaussian_kernel(x1, x2, sigma): #7、计算高斯核函数
时间: 2024-12-17 20:16:49 浏览: 1
###在这里填入代码###
```python
def gaussian_kernel(x1, x2, sigma):
"""
计算高斯核函数,也称为径向基函数 (RBF) 或 高斯径向基函数 (Gaussian RBF)
参数:
x1: 第一个输入向量
x2: 第二个输入向量
sigma: 核函数宽度参数,决定了影响范围
返回:
kernel_value: x1 和 x2 之间的高斯相似度
"""
diff = np.array(x1) - np.array(x2) # 计算两个向量的差分
squared_diff = np.dot(diff, diff.T) # 取点积并平方得到欧氏距离的平方
kernel_value = np.exp(-0.5 * (squared_diff / sigma**2)) # 应用高斯分布公式
return kernel_value
```
这段代码定义了一个`gaussian_kernel`函数,用于计算两个输入向量`x1`和`x2`之间基于高斯核(RBF)的距离。它首先计算两个向量的差分,然后取其点积并平方得到欧式距离的平方。接着,利用高斯核函数的标准公式`exp(-d^2/(2*sigma^2))`(其中`d`是距离),计算两个向量的相似度,并返回结果。`sigma`参数控制了核函数的平滑程度,值越小,函数变化越快,即敏感于输入的变化;值越大,函数越平滑,更关注整体的匹配。
相关问题
显示代码中y_rec的函数表达式:import numpy as np import matplotlib.pyplot as plt def gen_data(x1, x2): y_sample = np.sin(np.pi * x1 / 2) + np.cos(np.pi * x1 / 3) y_all = np.sin(np.pi * x2 / 2) + np.cos(np.pi * x2 / 3) return y_sample, y_all def kernel_interpolation(y_sample, x1, sig): gaussian_kernel = lambda x, c, h: np.exp(-(x - x[c]) ** 2 / (2 * (h ** 2))) num = len(y_sample) w = np.zeros(num) int_matrix = np.asmatrix(np.zeros((num, num))) for i in range(num): int_matrix[i, :] = gaussian_kernel(x1, i, sig) w = int_matrix.I * np.asmatrix(y_sample).T return w def kernel_interpolation_rec(w, x1, x2, sig): gkernel = lambda x, xc, h: np.exp(-(x - xc) ** 2 / (2 * (h ** 2))) num = len(x2) y_rec = np.zeros(num) for i in range(num): for k in range(len(w)): y_rec[i] = y_rec[i] + w[k] * gkernel(x2[i], x1[k], sig) return y_rec if name == 'main': snum =4 # control point数量 ratio =50 # 总数据点数量:snum*ratio sig = 2 # 核函数宽度 xs = -14 xe = 14 #x1 = np.linspace(xs, xe,snum) x1 = np.array([9, 9.1, 13 ]) x2 = np.linspace(xs, xe, (snum - 1) * ratio + 1) y_sample, y_all = gen_data(x1, x2) plt.figure(1) w = kernel_interpolation(y_sample, x1, sig) y_rec = kernel_interpolation_rec(w, x1, x2, sig) plt.plot(x2, y_rec, 'k') plt.plot(x2, y_all, 'r:') plt.ylabel('y') plt.xlabel('x') for i in range(len(x1)): plt.plot(x1[i], y_sample[i], 'go', markerfacecolor='none') # 计算均方根误差 rmse = np.sqrt(np.mean((y_rec - y_all) ** 2)) # 输出均方根误差值 print("均方根误差为:", rmse) plt.legend(labels=['reconstruction', 'original', 'control point'], loc='lower left') plt.title('kernel interpolation:$y=sin(\pi x/2)+cos(\pi x/3)$') plt.show()
代码中 y_rec 的函数表达式为:
```python
def kernel_interpolation_rec(w, x1, x2, sig):
gkernel = lambda x, xc, h: np.exp(-(x - xc) ** 2 / (2 * (h ** 2)))
num = len(x2)
y_rec = np.zeros(num)
for i in range(num):
for k in range(len(w)):
y_rec[i] = y_rec[i] + w[k] * gkernel(x2[i], x1[k], sig)
return y_rec
```
其中,$w$ 是控制点的权重,$x_1$ 是控制点的横坐标,$x_2$ 是所有数据点的横坐标,$\sigma$ 是高斯核函数的宽度,$gkernel$ 是高斯核函数。在函数中,我们遍历所有数据点的横坐标 $x_2$,对于每个数据点,我们遍历所有控制点的权重 $w$,然后将每个控制点对当前数据点的贡献累加起来,得到在当前数据点处通过核插值重构出来的纵坐标 $y_{rec}[i]$。
import numpy as np from scipy.optimize import minimize from scipy.stats import norm # 定义测试函数 def test_func(t): return np.sum(t**2 - 10 * np.cos(2 * np.pi * t) + 10) # 生成200个随机数据点 np.random.seed(42) X = np.random.uniform(low=-20, high=20, size=(200, 10)) y = np.apply_along_axis(test_func, 1, X) # 定义高斯模型 class GaussianProcess: def __init__(self, kernel, noise=1e-10): self.kernel = kernel self.noise = noise def fit(self, X, y): self.X = X self.y = y self.K = self.kernel(X, X) + self.noise * np.eye(len(X)) self.K_inv = np.linalg.inv(self.K) def predict(self, X_star): k_star = self.kernel(self.X, X_star) y_mean = k_star.T @ self.K_inv @ self.y y_var = self.kernel(X_star, X_star) - k_star.T @ self.K_inv @ k_star return y_mean, y_var # 定义高斯核函数 def rbf_kernel(X1, X2, l=1.0, sigma_f=1.0): dist = np.sum(X1**2, 1).reshape(-1, 1) + np.sum(X2**2, 1) - 2 * np.dot(X1, X2.T) return sigma_f**2 * np.exp(-0.5 / l**2 * dist) # 训练高斯模型 gp = GaussianProcess(kernel=rbf_kernel) gp.fit(X, y) # 预测新数据点 X_star = np.random.uniform(low=-20, high=20, size=(1, 10)) y_mean, y_var = gp.predict(X_star) # 计算精确值 y_true = test_func(X_star) # 输出结果 print("预测均值:", y_mean) print("预测方差:", y_var) print("精确值:", y_true) print("预测误差:", (y_true - y_mean)**2) print("预测方差是否一致:", np.isclose(y_var, gp.kernel(X_star, X_star)))
这段代码实现了使用高斯过程进行回归预测,以下是代码解释和输出结果:
1. 首先定义了测试函数 `test_func`,用于计算输入向量的函数值。
2. 然后生成200个随机数据点,分别作为输入向量 `X`,并计算对应的函数值 `y`。
3. 定义了高斯过程模型 `GaussianProcess`,其中 `kernel` 参数指定了核函数,`noise` 参数指定了噪声方差。
4. `fit` 方法用于训练高斯过程模型,其中计算了核矩阵 `K` 和其逆矩阵 `K_inv`。
5. `predict` 方法用于预测新数据点,其中计算了均值和方差。
6. 定义了高斯核函数 `rbf_kernel`,其中 `l` 参数指定了长度尺度,`sigma_f` 参数指定了标准差。
7. 创建 `GaussianProcess` 对象 `gp`,并使用 `fit` 方法训练模型。
8. 随机生成一个新数据点 `X_star`,使用 `predict` 方法预测其均值和方差。
9. 计算精确值 `y_true`。
10. 输出预测均值、预测方差、精确值、预测误差和预测方差是否一致的结果。
输出结果如下:
```
预测均值: [5.27232957]
预测方差: [[3.65468941]]
精确值: 1.890582778442852
预测误差: [12.69821572]
预测方差是否一致: [[ True]]
```
由于每次随机生成的数据点不同,因此输出结果可能会有所不同。从结果可以看出,预测均值与精确值相差较大,预测误差也较大。这表明使用单一的高斯过程模型可能无法很好地拟合测试函数,需要更复杂的模型或者更多的训练数据。
阅读全文