ad7606 spi stm32f103 hal

时间: 2023-12-20 22:02:19 浏览: 83
ad7606是一种12位模数转换器,采用SPI接口与STM32F103微控制器进行通信。在STM32F103上实现AD7606的SPI通信需要使用STM32的HAL库函数。 要在STM32F103上配置SPI通信,首先需要初始化SPI外设。然后,需要设置SPI的各种参数,比如数据传输模式、时钟极性和相位等。接着,需要设置STM32F103的GPIO引脚,将其配置为SPI的SCK、MISO和MOSI引脚,并连接到AD7606的对应引脚上。然后通过HAL库函数编写SPI通信的初始化和数据传输函数。 在使用HAL库函数时,需要包含相应的头文件,并且按照对应的函数接口来进行配置和数据传输。对于AD7606这样的外设,可以通过HAL库函数提供的SPI接口来进行数据传输,包括发送和接收数据。 在STM32F103上实现AD7606的SPI通信需要仔细理解AD7606的通信规范并编写对应的SPI通信程序。通过HAL库函数,可以方便地配置SPI通信,并且进行数据传输,从而实现与AD7606的通信。 总之,通过使用STM32F103的HAL库函数,可以实现与AD7606的SPI通信,从而实现数据的传输和控制。这种方法能够简化程序设计,提高开发效率,使得在STM32F103上实现AD7606的SPI通信变得更加方便和可靠。
相关问题

AD7606 STM32F103 hal dma 代码

以下是AD7606 STM32F103 HAL DMA代码的示例: ```c #include "stm32f1xx_hal.h" #include "main.h" /* AD7606相关定义 */ #define AD7606_CLK_GPIO_Port GPIOA #define AD7606_CLK_Pin GPIO_PIN_5 #define AD7606_nCS_GPIO_Port GPIOA #define AD7606_nCS_Pin GPIO_PIN_6 #define AD7606_BUSY_GPIO_Port GPIOA #define AD7606_BUSY_Pin GPIO_PIN_7 #define AD7606_RDY_GPIO_Port GPIOB #define AD7606_RDY_Pin GPIO_PIN_0 #define AD7606_D0_GPIO_Port GPIOB #define AD7606_D0_Pin GPIO_PIN_1 #define AD7606_D1_GPIO_Port GPIOB #define AD7606_D1_Pin GPIO_PIN_2 #define AD7606_D2_GPIO_Port GPIOB #define AD7606_D2_Pin GPIO_PIN_10 #define AD7606_D3_GPIO_Port GPIOB #define AD7606_D3_Pin GPIO_PIN_11 #define AD7606_D4_GPIO_Port GPIOB #define AD7606_D4_Pin GPIO_PIN_12 #define AD7606_D5_GPIO_Port GPIOB #define AD7606_D5_Pin GPIO_PIN_13 #define AD7606_D6_GPIO_Port GPIOB #define AD7606_D6_Pin GPIO_PIN_14 #define AD7606_D7_GPIO_Port GPIOB #define AD7606_D7_Pin GPIO_PIN_15 /* DMA相关定义 */ #define ADC_DMA DMA1 #define ADC_DMA_STREAM DMA1_Channel1 #define ADC_DMA_IRQn DMA1_Channel1_IRQn /* AD7606读取数据缓冲区大小 */ #define AD7606_BUFFER_SIZE 8192 /* AD7606 DMA读取数据缓冲区 */ uint16_t ad7606_buffer[AD7606_BUFFER_SIZE]; /* AD7606读取数据缓冲区计数器 */ uint32_t ad7606_buffer_count = 0; /* AD7606 DMA传输完成标志 */ volatile uint8_t ad7606_dma_complete = 0; /* AD7606 DMA传输完成回调函数 */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) { ad7606_buffer_count += AD7606_BUFFER_SIZE; if (ad7606_buffer_count >= AD7606_BUFFER_SIZE) { ad7606_dma_complete = 1; } } /* AD7606初始化 */ void ad7606_init(void) { /* GPIO初始化 */ GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = AD7606_CLK_Pin | AD7606_nCS_Pin | AD7606_BUSY_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = AD7606_RDY_Pin | AD7606_D0_Pin | AD7606_D1_Pin | AD7606_D2_Pin | AD7606_D3_Pin | AD7606_D4_Pin | AD7606_D5_Pin | AD7606_D6_Pin | AD7606_D7_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* DMA初始化 */ __HAL_RCC_DMA1_CLK_ENABLE(); HAL_NVIC_SetPriority(ADC_DMA_IRQn, 0, 0); HAL_NVIC_EnableIRQ(ADC_DMA_IRQn); } /* AD7606 DMA传输 */ void ad7606_dma_read(uint16_t* data, uint32_t count) { /* DMA传输结束标志 */ ad7606_dma_complete = 0; /* ADC初始化 */ ADC_HandleTypeDef hadc; hadc.Instance = ADC1; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc.Init.ContinuousConvMode = ENABLE; hadc.Init.NbrOfConversion = 1; hadc.Init.DiscontinuousConvMode = DISABLE; hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc.Init.Resolution = ADC_RESOLUTION_12B; hadc.Init.DMAContinuousRequests = ENABLE; hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV; HAL_ADC_Init(&hadc); /* ADC通道配置 */ ADC_ChannelConfTypeDef sConfig; sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; HAL_ADC_ConfigChannel(&hadc, &sConfig); /* DMA初始化 */ ADC_DMA_STREAM->CCR &= ~DMA_SxCR_EN; ADC_DMA_STREAM->CNDTR = count; ADC_DMA_STREAM->CPAR = (uint32_t)&ADC1->DR; ADC_DMA_STREAM->CMAR = (uint32_t)data; ADC_DMA_STREAM->CCR &= ~DMA_SxCR_CHSEL_Msk; ADC_DMA_STREAM->CCR |= (uint32_t)DMA_CHANNEL_0 << DMA_SxCR_CHSEL_Pos; ADC_DMA_STREAM->CCR &= ~(DMA_SxCR_DIR | DMA_SxCR_PINC | DMA_SxCR_MINC | DMA_SxCR_PSIZE | DMA_SxCR_MSIZE | DMA_SxCR_PL | DMA_SxCR_M2M); ADC_DMA_STREAM->CCR |= DMA_SxCR_MINC | DMA_SxCR_CIRC | DMA_SxCR_PSIZE_HALF | DMA_SxCR_MSIZE_HALF | DMA_SxCR_PL_VERY_HIGH | DMA_SxCR_TCIE; ADC_DMA_STREAM->CCR |= DMA_SxCR_EN; /* 启动ADC转换 */ HAL_ADC_Start(&hadc); } int main(void) { HAL_Init(); ad7606_init(); /* 等待AD7606准备好 */ while (HAL_GPIO_ReadPin(AD7606_BUSY_GPIO_Port, AD7606_BUSY_Pin) != GPIO_PIN_SET); /* 读取AD7606数据 */ uint32_t count = 0; while (count < 65536) { ad7606_dma_read(ad7606_buffer + count, AD7606_BUFFER_SIZE); count += AD7606_BUFFER_SIZE; while (!ad7606_dma_complete); } /* 停止ADC转换 */ HAL_ADC_Stop(&hadc); while (1) { } } /* DMA传输完成中断 */ void ADC_DMA_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_adc); } ``` 这是一个简单的示例代码,适用于使用STM32F103芯片和HAL库的AD7606应用。具体的GPIO引脚和DMA配置取决于你的硬件连接和需求。请根据实际情况进行修改。

stm32f103 hal can

STM32F103 HAL CAN是指基于STM32F103系列微控制器的HAL库函数对CAN通信进行支持。CAN(Controller Area Network)是一种常用的串行通信协议,广泛应用于汽车、工业控制和物联网等领域。 STM32F103 HAL CAN提供了一系列函数,用于配置STM32F103微控制器的CAN接口,实现CAN通信的发送和接收功能。通过HAL库函数,我们可以轻松地进行CAN通信的配置和使用。 STM32F103 HAL CAN的主要特点包括: 1. 灵活的配置:HAL库函数提供了丰富的配置选项,可以配置CAN通信的波特率、工作模式、过滤器等参数,以适应不同的应用需求。 2. 简化编程:HAL库函数封装了底层的寄存器操作和配置过程,简化了编程的复杂度,使开发者能够更加便捷地完成CAN通信的编程。 3. 多种发送模式:HAL库函数支持多种CAN发送模式,包括单次发送、自动重传和FIFO队列发送等,以满足不同应用场景的要求。 4. 接收过滤:HAL库函数提供了多种接收过滤模式,可以根据ID、数据内容和数据长度等条件进行过滤,以便只接收感兴趣的CAN帧。 5. 错误管理:HAL库函数具备完善的错误管理机制,能够实时监测CAN通信的错误情况,并提供相应的错误处理函数。 总之,STM32F103 HAL CAN是一套功能强大的库函数,为开发者提供了高效、可靠的CAN通信解决方案。使用STM32F103 HAL CAN,开发者可以轻松实现各种CAN通信应用,提升开发效率和产品可靠性。

相关推荐

最新推荐

recommend-type

STM32F103固件函数库用户手册(中文)

STM32F103固件函数库是针对基于ARM微控制器的32位STM32F101xx和STM32F103xx系列设计的一个全面的软件包,旨在简化用户对这些微控制器外设的使用。这个库包含了一系列的程序、数据结构和宏,覆盖了所有外设的功能特性...
recommend-type

STM32的使用之SPI通信DMA模式

STM32的SPI通信DMA模式 在本文中,我们将深入探讨STM32微控制器中的SPI通信DMA模式。SPI(Serial Peripheral Interface)是一种同步串行通信协议,广泛应用于嵌入式系统中。而DMA(Direct Memory Access)则是一种...
recommend-type

STM32 SPI DMA 的使用

"STM32 SPI DMA 的使用" 本文总结了STM32 SPI DMA 的使用,包括SPI总线的特点与注意点、SPI DMA的使用、NSS的说明和注意点、DMA的说明、SPI_DMA的通信过程和相关代码。 一、SPI总线的特点与注意点 SPI(Serial ...
recommend-type

计算机系统基石:深度解析与优化秘籍

深入理解计算机系统(原书第2版)是一本备受推崇的计算机科学教材,由卡耐基梅隆大学计算机学院院长,IEEE和ACM双院院士推荐,被全球超过80所顶级大学选作计算机专业教材。该书被誉为“价值超过等重量黄金”的无价资源,其内容涵盖了计算机系统的核心概念,旨在帮助读者从底层操作和体系结构的角度全面掌握计算机工作原理。 本书的特点在于其起点低但覆盖广泛,特别适合大三或大四的本科生,以及已经完成基础课程如组成原理和体系结构的学习者。它不仅提供了对计算机原理、汇编语言和C语言的深入理解,还包含了诸如数字表示错误、代码优化、处理器和存储器系统、编译器的工作机制、安全漏洞预防、链接错误处理以及Unix系统编程等内容,这些都是提升程序员技能和理解计算机系统内部运作的关键。 通过阅读这本书,读者不仅能掌握系统组件的基本工作原理,还能学习到实用的编程技巧,如避免数字表示错误、优化代码以适应现代硬件、理解和利用过程调用、防止缓冲区溢出带来的安全问题,以及解决链接时的常见问题。这些知识对于提升程序的正确性和性能至关重要,使读者具备分析和解决问题的能力,从而在计算机行业中成为具有深厚技术实力的专家。 《深入理解计算机系统(原书第2版)》是一本既能满足理论学习需求,又能提供实践经验指导的经典之作,无论是对在校学生还是职业程序员,都是提升计算机系统知识水平的理想读物。如果你希望深入探究计算机系统的世界,这本书将是你探索之旅的重要伴侣。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率

![PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率](https://img-blog.csdn.net/20180928141511915?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MzE0NzU5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. PHP数据库操作基础** PHP数据库操作是使用PHP语言与数据库交互的基础,它允许开发者存储、检索和管理数据。本章将介绍PHP数据库操作的基本概念和操作,为后续章节奠定基础。
recommend-type

vue-worker

Vue Worker是一种利用Web Workers技术的 Vue.js 插件,它允许你在浏览器的后台线程中运行JavaScript代码,而不影响主线程的性能。Vue Worker通常用于处理计算密集型任务、异步I/O操作(如文件读取、网络请求等),或者是那些需要长时间运行但不需要立即响应的任务。 通过Vue Worker,你可以创建一个新的Worker实例,并将Vue实例的数据作为消息发送给它。Worker可以在后台执行这些数据相关的操作,然后返回结果到主页面上,实现了真正的非阻塞用户体验。 Vue Worker插件提供了一个简单的API,让你能够轻松地在Vue组件中管理worker实例
recommend-type

《ThinkingInJava》中文版:经典Java学习宝典

《Thinking in Java》中文版是由知名编程作家Bruce Eckel所著的经典之作,这本书被广泛认为是学习Java编程的必读书籍。作为一本面向对象的编程教程,它不仅适合初学者,也对有一定经验的开发者具有启发性。本书的核心目标不是传授Java平台特定的理论,而是教授Java语言本身,着重于其基本语法、高级特性和最佳实践。 在内容上,《Thinking in Java》涵盖了Java 1.2时期的大部分关键特性,包括Swing GUI框架和新集合类库。作者通过清晰的讲解和大量的代码示例,帮助读者深入理解诸如网络编程、多线程处理、虚拟机性能优化以及与其他非Java代码交互等高级概念。书中提供了320个实用的Java程序,超过15000行代码,这些都是理解和掌握Java语言的宝贵资源。 作为一本获奖作品,Thinking in Java曾荣获1995年的Software Development Jolt Award最佳书籍大奖,体现了其在业界的高度认可。Bruce Eckel不仅是一位经验丰富的编程专家,还是C++领域的权威,他拥有20年的编程经历,曾在世界各地教授对象编程,包括C++和Java。他的著作还包括Thinking in C++,该书同样广受好评。 作者不仅是一位技术导师,还是一位教育家,他善于用易于理解的方式阐述复杂的编程概念,使读者能够领略到编程中的“智慧”。与其他Java教材相比,《Thinking in Java》以其成熟、连贯、严谨的风格,赢得了读者的一致赞誉,被誉为最全面且实例恰当的编程指南,是学习Java过程中不可或缺的参考资料。 此外,本书还提供了配套的CD,包含15小时的语音授课,以及可以从Bruce Eckel的官方网站www.BruceEckel.com免费获取的源码和电子版更新,确保读者能够跟随最新的技术发展保持同步。无论你是Java新手还是进阶者,《Thinking in Java》都是一次深入探索Java世界的重要旅程。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

揭秘PHP文本分析:算法与技术大揭秘,助你深入理解文本处理

![揭秘PHP文本分析:算法与技术大揭秘,助你深入理解文本处理](https://img-blog.csdn.net/20180928170702309?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pheTUzMTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. PHP文本分析概述 文本分析是利用计算机技术对文本数据进行处理和分析的过程,旨在从文本中提取有价值的信息和知识。PHP作为一种广泛使用的编程语言,提供了丰富的文本分析功能,包括正则表达式、字符串处理函数