根据提供的数据集(LR.zip),使用SVM与LR分类模型,选取合理的评价指标,编写程序,对结果进行对比。
时间: 2024-12-25 22:29:22 浏览: 33
首先,你需要下载并解压名为"LR.zip"的数据集,然后加载数据并预处理,包括特征提取、缺失值处理、归一化等步骤。对于SVM(支持向量机)和LR(逻辑回归)这两种分类模型,我们通常使用的评价指标有准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数(F1 Score)。以下是基本步骤:
导入必要的库:
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
加载数据:
data = pd.read_csv('LR.zip', compression='zip')
数据预处理:
X = data.drop('target_column', axis=1) # 假设'target_column'是目标变量 y = data['target_column'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)
构建模型并训练: ```python lr_model = LogisticRegression() svm_model = SVC()
lr_model.fit(X_train, y_train) svm_model.fit(X_train, y_train)
5. 预测及评估:
```python
lr_pred = lr_model.predict(X_test)
svm_pred = svm_model.predict(X_test)
accuracy_lr = accuracy_score(y_test, lr_pred)
precision_lr = precision_score(y_test, lr_pred, average='weighted')
recall_lr = recall_score(y_test, lr_pred, average='weighted')
f1_lr = f1_score(y_test, lr_pred, average='weighted')
accuracy_svm = accuracy_score(y_test, svm_pred)
precision_svm = precision_score(y_test, svm_pred, average='weighted')
recall_svm = recall_score(y_test, svm_pred, average='weighted')
f1_svm = f1_score(y_test, svm_pred, average='weighted')
print("Logistic Regression Metrics:")
print("Accuracy:", accuracy_lr)
print("Precision:", precision_lr)
print("Recall:", recall_lr)
print("F1 Score:", f1_lr)
print("\nSupport Vector Machine Metrics:")
print("Accuracy:", accuracy_svm)
print("Precision:", precision_svm)
print("Recall:", recall_svm)
print("F1 Score:", f1_svm)
- 结果对比: 通过上述指标,你可以比较SVM和LR模型在测试集上的性能。一般来说,选择哪个模型取决于具体的应用场景,如果追求精度,可以选择F1 Score更高的;如果关注误报和漏报,可以分别看Precision和Recall。