python高斯函数拟合程度
时间: 2023-08-26 09:15:03 浏览: 168
回答: 在Python中,可以使用astropy库来进行高斯函数拟合。首先要导入相应的库,如astropy.modeling和astropy.modeling.fitting。然后,通过定义一个初始的高斯函数模型,使用LevMarLSQFitter进行拟合。具体步骤如下:
1. 导入必要的库:
```
from astropy.modeling import models, fitting
import numpy as np
import matplotlib.pyplot as plt
```
2. 生成高斯数据:
```
def func_gaosi(x, miu, sigma):
return 1/np.sqrt(2*np.pi)/sigma*np.exp(-(x-miu)**2/2/sigma**2)
x = np.linspace(0, 1, 100)
y = func_gaosi(x, 0.5, 0.2)
y = np.random.normal(0., 0.02, x.shape)
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```
3. 使用astropy进行高斯拟合:
```
g_init = models.Gaussian1D(amplitude=1., mean=0, stddev=1.)
fit_g = fitting.LevMarLSQFitter()
g = fit_g(g_init, x, y)
```
通过观察拟合结果,可以评估高斯函数拟合的程度。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [Python 高斯拟合](https://blog.csdn.net/qq_37066410/article/details/111573771)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文