deeplabv3+代码
时间: 2025-01-08 09:45:43 浏览: 4
### DeepLabV3+ 的代码实现
DeepLabV3+ 是一种用于语义分割的强大架构,在多个公开数据集上取得了优异的成绩。以下是基于PyTorch框架下DeepLabV3+的主要组件及其工作原理。
#### 1. 主干网络 Backbone Network
主干网络负责提取图像特征图谱,通常采用预训练的ResNet或Xception作为基础模型[^2]。这些骨干网络能够提供丰富的低级到高级视觉表示,对于后续的任务至关重要。
```python
from torchvision import models
def build_backbone(backbone_name='resnet50'):
if backbone_name == 'resnet50':
model = models.resnet50(pretrained=True)
layers = list(model.children())[:-2]
elif backbone_name == 'xception':
from networks.xception import AlignedXception
model = AlignedXception(None)
layers = [model]
return nn.Sequential(*layers)
```
#### 2. Atrous Spatial Pyramid Pooling (ASPP)
为了捕捉多尺度上下文信息并处理不同大小的目标对象,DeepLabV3引入了Atrous卷积的空间金字塔池化模块。该部分通过应用具有多种扩张率(atrous rate)的平行分支来增强感受野范围[^3]。
```python
class ASPPConv(nn.Module):
def __init__(self, in_channels, out_channels, dilation):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3,
padding=dilation, dilation=dilation)
def forward(self, x):
return F.relu_(self.conv(x))
class ASPPPooling(nn.Sequential):
def __init__(self, in_channels, out_channels):
super().__init__(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, out_channels, 1),
nn.ReLU(inplace=True))
def forward(self, x):
size = x.shape[-2:]
for mod in self:
x = mod(x)
return F.interpolate(x, size=size, mode='bilinear', align_corners=False)
class ASPP(nn.Module):
def __init__(self, in_channels, atrous_rates=[6, 12, 18]):
super().__init__()
modules = []
rates = tuple(atrous_rates)
channels = 256
modules.append(
nn.Sequential(
nn.Conv2d(in_channels, channels, 1, bias=False),
nn.BatchNorm2d(channels),
nn.ReLU()))
for rate in rates:
modules.append(ASPPConv(in_channels, channels, rate))
modules.append(ASPPPooling(in_channels, channels))
self.convs = nn.ModuleList(modules)
self.project = nn.Sequential(
nn.Conv2d(len(self.convs)*channels, channels, 1, bias=False),
nn.BatchNorm2d(channels),
nn.ReLU(),
nn.Dropout(0.5))
def forward(self, feature_map):
res = []
for conv in self.convs:
res.append(conv(feature_map))
res = torch.cat(res, dim=1)
return self.project(res).contiguous()
```
#### 3. 解码器 Decoder Module
解码器旨在恢复由编码过程中丢失的空间分辨率,并融合来自浅层的信息以提高边界定位精度。它接受两个输入:一个是经过ASPP处理后的深层特征;另一个是从早期阶段获取的较低层次特性[^4]。
```python
class Decoder(nn.Module):
def __init__(self, low_level_inplanes, num_classes):
super().__init__()
self.conv1 = nn.Conv2d(low_level_inplanes, 48, 1, bias=False)
self.bn1 = nn.BatchNorm2d(48)
self.relu = nn.ReLU()
self.last_conv = nn.Sequential(
nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv2d(256, num_classes, kernel_size=1, stride=1)
)
def forward(self, x, low_level_feat):
low_level_feat = self.conv1(low_level_feat)
low_level_feat = self.bn1(low_level_feat)
low_level_feat = self.relu(low_level_feat)
x = F.interpolate(x, size=low_level_feat.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x, low_level_feat), dim=1)
x = self.last_conv(x)
return x
```
最后,整个网络可以通过组合上述各个组成部分构建完成:
```python
import torch.nn as nn
class DeepLabv3Plus(nn.Module):
def __init__(...): # 参数省略...
...
self.backbone = build_backbone(...)
self.aspp = ASPP(...)
self.decoder = Decoder(...)
def forward(self, input_tensor):
x, low_level_features = self.backbone(input_tensor)
x = self.aspp(x)
x = self.decoder(x, low_level_features)
x = F.interpolate(x, size=input_tensor.size()[2:], mode="bilinear", align_corners=True)
return x
```
阅读全文