Swin-Transformer
时间: 2023-10-14 13:58:26 浏览: 168
Swin Transformer是一种基于Transformer模型的视觉领域网络,它在2021年由微软研究院发表在ICCV上的一篇文章中提出,并且获得了ICCV 2021最佳论文的荣誉称号。\[3\] Swin Transformer与之前的Vision Transformer有几个不同之处。首先,Swin Transformer使用了层次化构建方法,即在特征图尺寸中进行多次下采样,这有助于构建目标检测、实例分割等任务的backbone。而Vision Transformer在一开始就直接进行16倍的下采样,并且后续的特征图也保持这个下采样率不变。其次,Swin Transformer引入了Windows Multi-Head Self-Attention(W-MSA)的概念,将特征图划分成多个不相交的窗口,并且在每个窗口内进行Multi-Head Self-Attention操作。这样做可以减少计算量,特别是在浅层特征图很大的情况下。然而,这样做也会隔绝不同窗口之间的信息传递,因此作者提出了Shifted Windows Multi-Head Self-Attention(SW-MSA)的概念,通过此方法可以在相邻的窗口之间传递信息。\[2\] Swin Transformer在COCO数据集的目标检测和实例分割任务中表现出色,并且目前仍然是该任务中的第一名。\[3\] Swin Transformer的论文和官方开源代码可以在论文地址和代码地址中找到。\[1\] \[3\]
#### 引用[.reference_title]
- *1* *2* *3* [Swin-Transformer网络结构详解](https://blog.csdn.net/qq_37541097/article/details/121119988)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)