transformer时序预测python
时间: 2023-07-31 12:04:22 浏览: 260
您好!对于时序预测问题,可以使用Transformer模型来进行处理。下面是一个使用Python实现时序预测的示例代码:
```python
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
# 定义自定义数据集类
class TimeSeriesDataset(Dataset):
def __init__(self, data, seq_length):
self.data = data
self.seq_length = seq_length
def __len__(self):
return len(self.data) - self.seq_length
def __getitem__(self, index):
return (
self.data[index:index+self.seq_length],
self.data[index+self.seq_length]
)
# 定义Transformer模型
class TransformerModel(nn.Module):
def __init__(self, input_size, output_size, num_layers, d_model, d_ff, num_heads):
super(TransformerModel, self).__init__()
self.encoder = nn.Embedding(input_size, d_model)
self.transformer = nn.Transformer(
d_model=d_model,
nhead=num_heads,
num_encoder_layers=num_layers,
num_decoder_layers=num_layers,
dim_feedforward=d_ff
)
self.decoder = nn.Linear(d_model, output_size)
def forward(self, x):
x = self.encoder(x)
x = self.transformer(x, x)
x = self.decoder(x)
return x
# 准备数据
data = [...] # 输入数据,形状为[seq_length, input_size]
seq_length = ...
batch_size = ...
dataset = TimeSeriesDataset(data, seq_length)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义模型参数
input_size = ...
output_size = ...
num_layers = ...
d_model = ...
d_ff = ...
num_heads = ...
# 实例化模型
model = TransformerModel(input_size, output_size, num_layers, d_model, d_ff, num_heads)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = ...
for epoch in range(num_epochs):
total_loss = 0
for batch_x, batch_y in dataloader:
optimizer.zero_grad()
output = model(batch_x)
loss = criterion(output, batch_y)
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss}")
# 使用模型进行预测
test_data = [...] # 测试数据,形状为[seq_length, input_size]
input_tensor = torch.tensor(test_data).unsqueeze(0)
prediction = model(input_tensor)
```
以上代码是一个简单的示例,您可以根据自己的数据和需求进行相应的调整和扩展。希望对您有帮助!如果您有任何疑问,请随时提问。
阅读全文