举一个例子说明用matlab实现多agent的AC算法
时间: 2023-12-31 10:04:33 浏览: 104
当使用MATLAB实现多智能体的Actor-Critic(AC)算法时,一个常见的例子是实现一个多智能体的博弈对策问题,例如双方互动的囚徒困境博弈。
以下是一个简化的MATLAB代码示例,演示如何使用AC算法实现多智能体的囚徒困境博弈:
```matlab
% 设置环境和参数
num_agents = 2; % 智能体数量
num_actions = 2; % 每个智能体的动作数量
num_episodes = 1000; % 训练总轮数
alpha = 0.1; % 学习率
gamma = 0.9; % 折现因子
epsilon = 0.1; % ε-贪心策略中的探索因子
% 初始化Q值函数和策略
Q = zeros(num_actions, num_actions, num_agents);
policy = ones(num_actions, num_actions, num_agents) / num_actions;
% 开始训练
for episode = 1:num_episodes
% 初始化状态和动作
state = ones(1, num_agents); % 初始状态为合作
action = zeros(1, num_agents);
% 进行一轮游戏
for agent = 1:num_agents
% 根据ε-贪心策略选择动作
if rand < epsilon
action(agent) = randi(num_actions);
else
[~, action(agent)] = max(policy(:, :, agent, state(agent)));
end
% 更新状态
state(agent) = action(agent);
end
% 计算奖励
if state(1) == 1 && state(2) == 1 % 双方合作
reward = 3;
elseif state(1) == 1 && state(2) == 2 % 智能体1合作,智能体2背叛
reward = 0;
elseif state(1) == 2 && state(2) == 1 % 智能体1背叛,智能体2合作
reward = 5;
else % 双方背叛
reward = 1;
end
% 更新Q值函数和策略
for agent = 1:num_agents
Q(state(agent), :, agent) = Q(state(agent), :, agent) + alpha * (reward + gamma * max(Q(action(agent), :, agent)) - Q(state(agent), action(agent), agent));
policy(:, :, agent, state(agent)) = softmax(Q(:, :, agent, state(agent)));
end
end
% softmax函数
function prob = softmax(values)
exp_values = exp(values);
prob = exp_values / sum(exp_values);
end
```
请注意,这只是一个简化的示例,实际应用中可能需要进行更多的调整和扩展。此外,代码中使用的囚徒困境博弈是一个简化的示例,实际应用中可能需要更复杂的环境和动作空间。
阅读全文