matplotlib与matplotlib.pyplot
时间: 2023-11-07 10:06:04 浏览: 84
matplotlib一个用于创建图表和可视化数据的Python库。它提供了一种类似于Matlab的绘图接口,使得用户可以轻松地创建各种类型的图表,如折线图、散点图、柱状图等。matplotlib.pyplot则是matplotlib库中的一个模块,提供了一系列绘图函数,使用户可以使用更简洁的方式创建和修改图表。
相关问题
帮我修改错误import pandas import pandas as pd import np import numpy np_load_old = np.load np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k) import matplotlib.pyplot matplotlib.pyplot.rcParams['font.sans-serif'] = 'SimHei' matplotlib.pyplot.rcParams['axes.unicode_minus'] = False data = numpy.load('D:\\temp\\test\\国民经济核算季度数据.npz') name = data['columns'] values = data['values'] matplotlib.pyplot.figure(figsize = (8,7)) matplotlib.pyplot.scatter(values[:,0],values[:,3], marker = 'o',c = '#0099FF') matplotlib.pyplot.scatter(values[:,0],values[:,4], marker = '*',c = '#00FF00') matplotlib.pyplot.scatter(values[:,0],values[:,5], marker = '+',c = '#FF3300') matplotlib.pyplot.xlabel('年份') matplotlib.pyplot.ylabel('生产总值(亿元)') matplotlib.pyplot.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45) matplotlib.pyplot.title('2000-2017年各产业季度生产总值散点图') matplotlib.pyplot.legend(['第一产业','第二产业','第三产业']) matplotlib.pyplot.savefig('D:\\temp\\test\\2022231168许开国c.png') matplotlib.pyplot.show name1 = pandas.DataFrame(list(data['columns'])) values1 = pandas.DataFrame(list(data['values'])) with pd.ExcelWriter('D:\\temp\\test\\2022231201许开国c.xlsx') as writer: name1.to_excel(writer, sheet_name= 'Sheet1', index=False, header=True) values1.to_excel(writer, sheet_name='Sheet2', index=False, header=True)
以下是修改过的代码,其中主要是将numpy和pandas的导入方式进行了修改,并且在matplotlib.pyplot的导入语句中添加了as关键字,以便在使用时不需要使用完整的模块名:
```python
import pandas as pd
import numpy as np
np_load_old = np.load
np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k)
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
data = np.load('D:\\temp\\test\\国民经济核算季度数据.npz')
name = data['columns']
values = data['values']
plt.figure(figsize = (8,7))
plt.scatter(values[:,0],values[:,3], marker = 'o',c = '#0099FF')
plt.scatter(values[:,0],values[:,4], marker = '*',c = '#00FF00')
plt.scatter(values[:,0],values[:,5], marker = '+',c = '#FF3300')
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title('2000-2017年各产业季度生产总值散点图')
plt.legend(['第一产业','第二产业','第三产业'])
plt.savefig('D:\\temp\\test\\2022231168许开国c.png')
plt.show()
name1 = pd.DataFrame(list(data['columns']))
values1 = pd.DataFrame(list(data['values']))
with pd.ExcelWriter('D:\\temp\\test\\2022231201许开国c.xlsx') as writer:
name1.to_excel(writer, sheet_name= 'Sheet1', index=False, header=True)
values1.to_excel(writer, sheet_name='Sheet2', index=False, header=True)
```
这样的话,你便可以在运行程序时直接使用pd和np作为pandas和numpy的别名,使用plt来代替matplotlib.pyplot。
matplotlib.pyplot.plot.boxplot
您可以使用`matplotlib.pyplot.boxplot`方法来绘制箱线图。
下面是一个简单的示例代码:
```python
import matplotlib.pyplot as plt
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
plt.boxplot(data)
plt.show()
```
这段代码将绘制一个简单的箱线图,其中`data`是要绘制的数据。您可以根据自己的需要修改数据和其他绘图参数来定制箱线图的外观。
阅读全文