yolov8测试代码
时间: 2023-07-30 14:05:02 浏览: 387
你可以使用以下代码来测试yolov8模型:
```python
import torch
from PIL import Image
from torchvision.transforms import functional as F
from yolov8.ultralytics.yolo.v8.detect import detect
# 加载模型权重
weights_path = 'E:/AI/yolo/yolov8/ultralytics-main/ultralytics/yolo/v8/detect/yolov8n.pt'
model = torch.load(weights_path, map_location=torch.device('cpu'))
# 加载图像
image_path = 'path_to_image.jpg'
image = Image.open(image_path)
# 图像预处理
image_tensor = F.to_tensor(image)
image_tensor = image_tensor.unsqueeze(0)
# 进行目标检测
results = detect(model, image_tensor)
# 打印检测结果
print(results.pandas().xyxy\[0\])
```
请确保你已经安装了必要的依赖库,并将`weights_path`和`image_path`替换为你自己的路径。这段代码将加载yolov8模型的权重,对输入图像进行目标检测,并打印出检测结果。
#### 引用[.reference_title]
- *1* *2* *3* [YOLOv8代码调试运行实战](https://blog.csdn.net/qq_26938321/article/details/128688951)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v4^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文