jupyter数据最大最小值归一化案列
时间: 2023-12-21 16:32:00 浏览: 183
以下是使用Jupyter Notebook进行数据最大最小值归一化的示例:
首先,我们需要导入numpy库来进行数值计算和数组操作。可以使用以下代码导入numpy库:
```python
import numpy as np
```
接下来,我们可以创建一个示例数据集。假设我们有一个包含多个特征的数据集,可以使用numpy的ones函数创建一个具有指定形状的数组,并将其乘以一个随机数来生成示例数据集。可以使用以下代码创建一个形状为(100, 5)的示例数据集:
```python
data = np.random.rand(100, 5) * 100
```
现在,我们可以使用numpy的max和min函数来计算数据集的最大值和最小值。可以使用以下代码分别计算每个特征的最大值和最小值:
```python
max_values = np.max(data, axis=0)
min_values = np.min(data, axis=0)
```
接下来,我们可以使用numpy的max和min函数来计算数据集的最大值和最小值。可以使用以下代码分别计算每个特征的最大值和最小值:
```python
max_values = np.max(data, axis=0)
min_values = np.min(data, axis=0)
```
最后,我们可以使用numpy的subtract和divide函数来进行最大最小值归一化。可以使用以下代码将数据集进行最大最小值归一化:
```python
normalized_data = np.divide(np.subtract(data, min_values), np.subtract(max_values, min_values))
```
现在,normalized_data就是经过最大最小值归一化后的数据集。
阅读全文