基于Python,利用LSTM对时序数据进行提前多步预测,并用RMSE评估其结果代码】

时间: 2024-04-20 11:22:24 浏览: 17
当然可以!以下是一个基于Python的LSTM模型用于时序数据多步预测的示例代码: ```python import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import LSTM, Dense # 读取数据 data = pd.read_csv('data.csv') # 数据预处理 scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data) # 构建训练集和测试集 train_size = int(len(scaled_data) * 0.8) train_data = scaled_data[:train_size, :] test_data = scaled_data[train_size:, :] # 定义函数生成训练集和测试集 def create_dataset(dataset, look_back): X, Y = [], [] for i in range(len(dataset) - look_back): X.append(dataset[i:(i + look_back), 0]) Y.append(dataset[i + look_back, 0]) return np.array(X), np.array(Y) look_back = 10 # 设置时间步长 train_X, train_Y = create_dataset(train_data, look_back) test_X, test_Y = create_dataset(test_data, look_back) # 将输入数据重塑为LSTM的输入格式 [样本数,时间步长,特征数] train_X = np.reshape(train_X, (train_X.shape[0], train_X.shape[1], 1)) test_X = np.reshape(test_X, (test_X.shape[0], test_X.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(look_back, 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) # 编译模型 model.compile(optimizer='adam', loss='mean_squared_error') # 训练模型 model.fit(train_X, train_Y, epochs=100, batch_size=32) # 预测数据 train_predict = model.predict(train_X) test_predict = model.predict(test_X) # 反归一化 train_predict = scaler.inverse_transform(train_predict) train_Y = scaler.inverse_transform([train_Y]) test_predict = scaler.inverse_transform(test_predict) test_Y = scaler.inverse_transform([test_Y]) # 评估模型 from sklearn.metrics import mean_squared_error train_rmse = np.sqrt(mean_squared_error(train_Y[0], train_predict[:, 0])) test_rmse = np.sqrt(mean_squared_error(test_Y[0], test_predict[:, 0])) print("训练集RMSE值:", train_rmse) print("测试集RMSE值:", test_rmse) ``` 请将代码中的`data.csv`替换为你的实际数据文件名,并根据需要进行调整。该代码通过LSTM模型进行多步预测,并使用均方根误差(RMSE)评估预测结果。

相关推荐

最新推荐

recommend-type

Python中利用LSTM模型进行时间序列预测分析的实现

主要介绍了Python中利用LSTM模型进行时间序列预测分析的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

用Python的长短期记忆神经网络进行时间序列预测

如何准备数据,开发和评估用于时间序列预测的LSTM递归神经网络。 1. 洗发水销售额数据集; 2. 测试设置; 3. 持续性模型预测; 4. LSTM数据准备; 5. LSTM模型开发; 6. LSTM预测; 7. 完整的LSTM例子; 8. 开发...
recommend-type

【预测模型】基于贝叶斯优化的LSTM模型实现数据预测matlab源码.pdf

【预测模型】基于贝叶斯优化的LSTM模型实现数据预测matlab源码.pdf
recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。