使用 python 实现上述算法
时间: 2024-01-01 20:04:25 浏览: 53
基于Python算法实现
以下是使用 Python 实现上述算法的代码:
```python
import heapq
def shortestPath(edges, n, source, destination, target):
# 将所有边权为 -1 的边的边权修改为 2 * 10^9
for i in range(len(edges)):
if edges[i][2] == -1:
edges[i][2] = 2 * 10**9
# 构建邻接表
graph = [[] for _ in range(n)]
for u, v, w in edges:
graph[u].append((v, w))
graph[v].append((u, w))
# 运行 Dijkstra 算法求出源点到各个节点的最短距离
dist = [float('inf')] * n
dist[source] = 0
heap = [(0, source)]
while heap:
d, u = heapq.heappop(heap)
if dist[u] < d:
continue
for v, w in graph[u]:
if dist[v] > d + w:
dist[v] = d + w
heapq.heappush(heap, (dist[v], v))
# 如果源点到目标节点的最短距离已经等于 target,则直接返回原始边集 edges
if dist[destination] == target:
return edges
# 否则,对于每条边权为 -1 的边 e = (u, v),我们可以将其边权调整为 w(e) = d(source, u) + c + d(v, destination)
for i in range(len(edges)):
u, v, w = edges[i]
if w == 2 * 10**9:
c = target - dist[source] - dist[destination] + dist[u] + dist[v]
if c < 1:
c = 1
edges[i][2] = c + dist[u] + dist[v]
# 再次运行 Dijkstra 算法检查源点到目标节点的最短距离是否等于 target
dist = [float('inf')] * n
dist[source] = 0
heap = [(0, source)]
while heap:
d, u = heapq.heappop(heap)
if dist[u] < d:
continue
for v, w in graph[u]:
if dist[v] > d + w:
dist[v] = d + w
heapq.heappush(heap, (dist[v], v))
# 如果源点到目标节点的最短距离等于 target,则返回修改后的边集 edges
if dist[destination] == target:
return edges
# 如果对于所有边权为 -1 的边都无法找到合适的修改方案使得源点到目标节点的最短距离等于 target,则返回空数组
return []
```
其中,edges 是边集,每个元素是一个三元组 (u, v, w),表示一条边从节点 u 连向节点 v,边权为 w;n 是节点数;source 和 destination 分别是源节点和目标节点;target 是要求的最短距离。函数返回修改后的边集,或者一个空数组。
阅读全文