用Seaborn编写绘制titanic数据集如下图形,以此统计在不同船舱等级内,男性、女性和儿童的总数以及生还率情况,数据集前10条数据和图形如下
时间: 2024-09-29 14:03:27 浏览: 49
使用Seaborn库创建这样的可视化图表需要首先加载Titanic数据集,并对其进行预处理。然后,我们可以使用FacetGrid功能来分别展示男性、女性和儿童在不同船舱等级内的乘客数量以及生存状态。以下是步骤概述:
1. **安装所需库** (如果你还没安装): 可能需要`pandas`, `seaborn`, 和 `matplotlib`。
```bash
pip install pandas seaborn matplotlib
```
2. **导入必要的库并加载数据**:
```python
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# 加载前10行数据
data = pd.read_csv("titanic.csv")[:10] # 假设数据文件名是'titanic.csv'
```
3. **数据预处理**:
- 确保数据包含"Sex", "Survived", "Pclass", "Age"等列。
- 对于缺失的年龄值,可以用中位数或其他适当的方式填充。
- 定义儿童的标准,比如年龄小于18岁。
4. **创建图形**:
```python
sns.set(style="whitegrid")
# 创建FacetGrid对象
g = sns.FacetGrid(data, row="Sex", hue="Survived", col="Pclass", margin_titles=True)
g.map(plt.hist, "Age", bins=10, edgecolor="black")
g.add_legend()
g.fig.suptitle('Titanic乘客分布及生存情况(仅显示前10条数据)')
plt.show()
```
这个代码将生成一个网格,其中每一块都展示了男性、女性和儿童在每个船舱等级中存活与未存活的年龄分布。
阅读全文