电阻R1=5.01kΩ,R2=5.13kΩ,R3=5.08kΩ对电阻进行线性组合,R4=R1+R2,R5=R2+R3,R6=R1+R2+R3,对电阻线性组合测量得R4=10.15kΩ,R5=10.21kΩ,R6=15.23kΩ,用matlab算出其精度估计
时间: 2024-11-05 17:25:43 浏览: 21
KF-5.08连接器封装PCB文件3D封装AD库
5星 · 资源好评率100%
电阻线性组合的精度可以通过计算每个组合电阻与其理论值(即R1 + R2、R2 + R3 和 R1 + R2 + R3)之间的误差来进行评估。对于给定的测量结果,我们可以计算如下的相对误差:
- R4 理论值 = R1 + R2 = 5.01 kΩ + 5.13 kΩ ≈ 10.14 kΩ
- 实际测量值 R4 = 10.15 kΩ
相对误差(R4) = |实际值 - 理论值| / 理论值 * 100% = |10.15 - 10.14| / 10.14 * 100%
- R5 理论值 = R2 + R3 = 5.13 kΩ + 5.08 kΩ ≈ 10.21 kΩ
- 实际测量值 R5 = 10.21 kΩ
相对误差(R5) = |10.21 - 10.21| / 10.21 * 100%
- R6 理论值 = R1 + R2 + R3 = 5.01 kΩ + 5.13 kΩ + 5.08 kΩ ≈ 15.22 kΩ
- 实际测量值 R6 = 15.23 kΩ
相对误差(R6) = |15.23 - 15.22| / 15.22 * 100%
在MATLAB中,可以编写一个简单的函数来计算这些误差。假设我们有一个函数`relative_error(resistance, theoretical)`:
```matlab
function err = relative_error(measured, theoretical)
err = abs(measured - theoretical) ./ theoretical * 100;
end
% 计算各个组合的误差
R4_err = relative_error(10.15, 10.14);
R5_err = relative_error(10.21, 10.21);
R6_err = relative_error(15.23, 15.22);
fprintf('R4 相对误差: %f%%\n', R4_err);
fprintf('R5 相对误差: %f%%\n', R5_err);
fprintf('R6 相对误差: %f%%\n', R6_err);
```
运行此代码,你会得到每个组合的相对误差百分比。
阅读全文