ukf算法的python实现
时间: 2023-08-01 07:13:48 浏览: 158
以下是一个简单的用Python实现UKF算法的示例代码:
```python
import numpy as np
def ukf_filter(x, P, z, Q, R, f, h):
n = len(x)
m = len(z)
alpha = 0.001
kappa = 0
beta = 2
lambda_ = alpha**2 * (n + kappa) - n
# Generate sigma points
sqrt_P = np.linalg.cholesky((n + lambda_) * P)
sigma_points = np.zeros((n, 2*n+1))
sigma_points[:, 0] = x
for i in range(n):
sigma_points[:, i+1] = x + sqrt_P[:, i]
sigma_points[:, n+i+1] = x - sqrt_P[:, i]
# Propagate sigma points through the nonlinear process function f
propagated_points = np.zeros((n, 2*n+1))
for i in range(2*n+1):
propagated_points[:, i] = f(sigma_points[:, i])
# Calculate predicted state and covariance
x_pred = np.sum(propagated_points, axis=1) / (2*n+1)
P_pred = ((propagated_points - x_pred[:, np.newaxis]) @ (propagated_points - x_pred[:, np.newaxis]).T) / (2*n+1) + Q
# Calculate predicted measurement mean and covariance
sqrt_P_pred = np.linalg.cholesky((n + lambda_) * P_pred)
sigma_points_pred = np.zeros((m, 2*n+1))
for i in range(2*n+1):
sigma_points_pred[:, i] = h(propagated_points[:, i])
z_pred = np.sum(sigma_points_pred, axis=1) / (2*n+1)
Pz_pred = ((sigma_points_pred - z_pred[:, np.newaxis]) @ (sigma_points_pred - z_pred[:, np.newaxis]).T) / (2*n+1) + R
# Calculate cross-covariance matrix
Pxz = ((propagated_points - x_pred[:, np.newaxis]) @ (sigma_points_pred - z_pred[:, np.newaxis]).T) / (2*n+1)
# Calculate Kalman gain
K = Pxz @ np.linalg.inv(Pz_pred)
# Update state and covariance
x = x_pred + K @ (z - z_pred)
P = P_pred - K @ Pz_pred @ K.T
return x, P
```
在使用该代码时,需要自定义状态转移函数 `f` 和观测函数 `h`,以及指定初始状态 `x`、初始协方差矩阵 `P`、过程噪声协方差矩阵 `Q`、测量噪声协方差矩阵 `R`,并提供观测值 `z`。函数 `f` 和 `h` 接受一个状态向量作为输入,并返回相应的状态转移值和观测值。
请注意,这只是UKF算法的简单实现示例,可能需要根据具体问题进行调整和优化。
阅读全文