根据下面的代码,把json结果解析成表头为:external_userid、status、takeover_time格式的文件:import requests import pandas as pd import itertools access_token = "your_access_token" handover_userids = ["user1", "user2", "user3", "user4", "user5"] takeover_userids = ["user6", "user7", "user8", "user9", "user10"] url = "https://qyapi.weixin.qq.com/cgi-bin/externalcontact/transfer_result?access_token=" + access_token headers = { "Content-Type": "application/json", "Authorization": "Bearer {}".format(access_token) } json_results = [] combinations = list(itertools.product(handover_userids, takeover_userids)) for handover_userid, takeover_userid in combinations: json_data = { "handover_userid": handover_userid, "takeover_userid": takeover_userid } response = requests.post(url, headers=headers, json=json_data) json_result = response.json() json_results.append(json_result) df = pd.DataFrame(json_results) print(df)
时间: 2023-07-21 15:10:02 浏览: 105
获取json数据并且解析
要将 JSON 结果解析为以 "external_userid"、"status" 和 "takeover_time" 为表头的文件,你可以使用 pandas 库的 `to_csv()` 函数将 DataFrame 对象保存为 CSV 文件。在保存之前,你需要对 DataFrame 进行一些处理,以确保列的顺序和命名正确。
以下是修改后的代码示例:
```python
import requests
import pandas as pd
import itertools
access_token = "your_access_token"
handover_userids = ["user1", "user2", "user3", "user4", "user5"]
takeover_userids = ["user6", "user7", "user8", "user9", "user10"]
url = "https://qyapi.weixin.qq.com/cgi-bin/externalcontact/transfer_result?access_token=" + access_token
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer {}".format(access_token)
}
json_results = []
combinations = list(itertools.product(handover_userids, takeover_userids))
for handover_userid, takeover_userid in combinations:
json_data = {
"handover_userid": handover_userid,
"takeover_userid": takeover_userid
}
response = requests.post(url, headers=headers, json=json_data)
json_result = response.json()
json_results.append(json_result)
df = pd.DataFrame(json_results)
# 重新排列列的顺序
df = df[["external_userid", "status", "takeover_time"]]
# 保存为CSV文件
df.to_csv("result.csv", index=False)
```
在这个示例中,我们使用 `df[["external_userid", "status", "takeover_time"]]` 对 DataFrame 进行重新排列,确保列的顺序正确。
然后,我们使用 `to_csv()` 函数将 DataFrame 对象保存为名为 "result.csv" 的 CSV 文件。通过设置 `index=False`,我们不保存索引列。
运行代码后,你将在同一目录下找到名为 "result.csv" 的文件,其中包含以 "external_userid"、"status" 和 "takeover_time" 为表头的数据。请确保在运行代码之前已安装 pandas 库。你可以使用 `pip install pandas` 命令进行安装。
阅读全文