3d gaussian splatting具体是用什么实现的
时间: 2024-01-23 14:02:50 浏览: 604
3D Gaussian Splatting是通过将一组2D图像/视频映射到投影平面上,并使用高斯函数对每个像素进行加权来创建高质量的3D场景。具体实现方法如下:
1. 将3D场景中的对象映射到投影平面上,得到一组2D图像/视频。
2. 对于每个像素,计算其在3D场景中的位置,并根据其距离和方向计算高斯权重。
3. 将每个像素的颜色值乘以对应的高斯权重,并将结果累加到最终的3D场景中。
4. 重复步骤2和步骤3,直到处理完所有的像素。
5. 最终得到的3D场景可以从任意角度进行渲染。
这种方法可以在GPU上并行处理,因为每个像素的计算是独立的。通过使用高斯函数对像素进行加权,可以实现光线从中心向外扩散并减弱的效果,从而创建出更真实的3D场景。
相关问题
3D Gaussian Splatting在linux上可视化
3D Gaussian Splatting是一种用于3D点云可视化的技术,它通过使用高斯函数来平滑点云数据,从而实现更平滑、更真实的3D渲染效果。在Linux上实现3D Gaussian Splatting的可视化,可以按照以下步骤进行:
1. **安装必要的软件和库**:
- **Python**:确保已安装Python 3.x。
- **OpenGL**:用于3D渲染。
- **NumPy**:用于数值计算。
- **Matplotlib**:用于绘图和可视化。
- **PyOpenGL**:Python的OpenGL绑定。
可以使用以下命令安装这些库:
```bash
pip install numpy matplotlib pyopengl
```
2. **准备点云数据**:
- 准备一个包含3D点坐标的文件,例如`point_cloud.npy`,可以使用NumPy保存点云数据。
3. **编写可视化代码**:
- 使用Python编写一个脚本,利用PyOpenGL进行渲染,并应用高斯函数进行平滑处理。
```python
import numpy as np
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import matplotlib.pyplot as plt
def gaussian(x, mu, sig):
return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))
def load_point_cloud(file_path):
return np.load(file_path)
def display():
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glLoadIdentity()
gluLookAt(0, 0, 5, 0, 0, 0, 0, 1, 0)
point_cloud = load_point_cloud('point_cloud.npy')
for point in point_cloud:
glPointSize(5.0)
glBegin(GL_POINTS)
glColor3f(1.0, 0.0, 0.0)
glVertex3f(point[0], point[1], point[2])
glEnd()
glutSwapBuffers()
def reshape(width, height):
if height == 0:
height = 1
glViewport(0, 0, width, height)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
gluPerspective(45, 1.0 * width / height, 1, 1000.0)
glMatrixMode(GL_MODELVIEW)
def main():
glutInit()
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH)
glutInitWindowSize(800, 600)
glutInitWindowPosition(100, 100)
glutCreateWindow(b"3D Gaussian Splatting")
glEnable(GL_DEPTH_TEST)
glutDisplayFunc(display)
glutReshapeFunc(reshape)
glutMainLoop()
if __name__ == "__main__":
main()
```
4. **运行可视化脚本**:
- 保存上述代码为`visualize.py`,确保`point_cloud.npy`在相同目录下,然后运行:
```bash
python visualize.py
```
这样,你就可以在Linux上实现3D Gaussian Splatting的可视化了。
3D高斯溅射环境配置
### 3D Gaussian Splatter Environment Setup Configuration
For configuring the environment to work with 3D Gaussian Splatting, several dependencies and configurations must be set up correctly. The process involves installing necessary software packages as well as setting up a development environment that can compile and run C++ code along with Python scripts.
#### Prerequisites Installation
To begin, ensure that Git is installed on your system since it will be used for cloning repositories from GitHub[^2]. Additionally, install CUDA Toolkit if GPU acceleration support is required; this toolkit facilitates running computations on NVIDIA GPUs which significantly speeds up processing times during training or rendering phases of 3D Gaussians[^1].
#### Setting Up Development Tools
A compatible version of CMake should also be present because it manages building projects written in languages like C++. Furthermore, PyTorch needs installation alongside torchvision libraries due to their extensive usage within deep learning models involved in optimizing radiance fields represented by these gaussians.
```bash
pip install torch torchvision torchaudio
```
#### Cloning Repository & Installing Dependencies
After preparing prerequisites mentioned above, proceed by cloning the official repository using git clone command provided below:
```bash
git clone https://github.com/graphdeco-inria/gaussian-splatting.git
cd gaussian-splatting
conda env create -f environment.yml
conda activate gaussian_splatting_env
```
This sequence installs all Python package requirements specified inside `environment.yml` file found at root directory after cloning.
#### Building Project From Source Code
Finally, build project binaries through invoking cmake followed by make commands under appropriate subdirectories where source files reside according to instructions documented online:
```bash
mkdir build && cd build
cmake ..
make -j$(nproc)
```
These steps prepare an operational setup capable of executing tasks related to real-time radiance field rendering via 3D Gaussian representations described earlier.
--related questions--
1. What are some common issues encountered while compiling open-source computer vision projects?
2. How does one choose between different versions of dependent libraries when creating machine learning environments?
3. Can you explain what role each component plays in achieving efficient scene representation using sparse point clouds transformed into dense distributions modeled as collections of ellipsoids?
4. In practice, how much performance improvement could leveraging GPU hardware bring compared against CPU-only implementations concerning large-scale data processing applications such as those seen here?
阅读全文