mp4 转 h264 原理

时间: 2024-06-17 19:06:03 浏览: 13
MP4和H.264都是视频编码格式,MP4是一种封装格式,而H.264是一种视频压缩编码标准。将MP4文件转换为H.264编码的视频需要进行以下步骤: 1. 解封装:将MP4文件解封装,提取出其中的视频流和音频流; 2. 解码:对视频流进行解码,得到未压缩的视频数据; 3. 转码:将解码后的视频数据进行压缩编码,采用H.264编码标准进行压缩编码; 4. 封装:将压缩后的视频数据封装成一个新的文件,可以采用MP4等格式进行封装。 在实现上述过程时,可以使用FFmpeg等开源库来实现。通过使用这些库,可以很方便地实现视频转码的功能。
相关问题

C#H264转BMP

根据提供的引用内容,您可以使用FFmpeg API在C#中编写程序,以实现将H264关键帧转换为BMP的功能。以下是大致的流程原理: 1.使用FFmpeg API解复用mp4文件,得到一个视频流。 2.将视频流解码为yuv序列。 3.将yuv序列中指定的一帧图片内容转换为rgb。 4.将rgb数据存储为bmp位图。 以下是一个C#的示例代码: ```csharp using System; using System.Drawing; using System.Drawing.Imaging; using System.Runtime.InteropServices; namespace H264ToBmp { class Program { static void Main(string[] args) { // 初始化FFmpeg FFmpeg.av_register_all(); FFmpeg.avcodec_register_all(); // 打开输入文件 string inputFileName = "input.mp4"; AVFormatContext* inputFormatContext = null; if (FFmpeg.avformat_open_input(&inputFormatContext, inputFileName, null, null) != 0) { Console.WriteLine("无法打开输入文件"); return; } // 查找视频流 int videoStreamIndex = -1; for (int i = 0; i < inputFormatContext->nb_streams; i++) { if (inputFormatContext->streams[i]->codecpar->codec_type == AVMediaType.AVMEDIA_TYPE_VIDEO) { videoStreamIndex = i; break; } } if (videoStreamIndex == -1) { Console.WriteLine("无法找到视频流"); return; } // 打开视频解码器 AVCodec* videoCodec = FFmpeg.avcodec_find_decoder(inputFormatContext->streams[videoStreamIndex]->codecpar->codec_id); if (videoCodec == null) { Console.WriteLine("无法找到视频解码器"); return; } AVCodecContext* videoCodecContext = FFmpeg.avcodec_alloc_context3(videoCodec); if (FFmpeg.avcodec_parameters_to_context(videoCodecContext, inputFormatContext->streams[videoStreamIndex]->codecpar) < 0) { Console.WriteLine("无法初始化视频解码器上下文"); return; } if (FFmpeg.avcodec_open2(videoCodecContext, videoCodec, null) < 0) { Console.WriteLine("无法打开视频解码器"); return; } // 查找关键帧 AVPacket packet = new AVPacket(); AVFrame* frame = FFmpeg.av_frame_alloc(); int gotPicture = 0; while (FFmpeg.av_read_frame(inputFormatContext, &packet) >= 0) { if (packet.stream_index == videoStreamIndex) { if (FFmpeg.avcodec_decode_video2(videoCodecContext, frame, &gotPicture, &packet) < 0) { Console.WriteLine("无法解码视频帧"); return; } if (gotPicture != 0 && (frame->key_frame != 0 || frame->pict_type == AVPictureType.AV_PICTURE_TYPE_I)) { break; } } FFmpeg.av_packet_unref(&packet); } // 将yuv序列转换为rgb SwsContext* swsContext = FFmpeg.sws_getContext(videoCodecContext->width, videoCodecContext->height, videoCodecContext->pix_fmt, videoCodecContext->width, videoCodecContext->height, AVPixelFormat.AV_PIX_FMT_RGB24, 0, null, null, null); AVFrame* rgbFrame = FFmpeg.av_frame_alloc(); byte_ptrArray4 rgbData = new byte_ptrArray4(); int rgbDataSize = FFmpeg.av_image_alloc(rgbData, null, videoCodecContext->width, videoCodecContext->height, AVPixelFormat.AV_PIX_FMT_RGB24, 1); FFmpeg.sws_scale(swsContext, frame->data, frame->linesize, 0, videoCodecContext->height, rgbData, rgbFrame->linesize); // 将rgb数据存储为bmp位图 Bitmap bmp = new Bitmap(videoCodecContext->width, videoCodecContext->height, videoCodecContext->width * 3, PixelFormat.Format24bppRgb, new IntPtr(rgbData[0])); bmp.Save("output.bmp", ImageFormat.Bmp); // 释放资源 FFmpeg.avformat_close_input(&inputFormatContext); FFmpeg.avcodec_free_context(&videoCodecContext); FFmpeg.av_frame_free(&frame); FFmpeg.sws_freeContext(swsContext); FFmpeg.av_frame_free(&rgbFrame); FFmpeg.av_freep(&rgbData[0]); } } public unsafe static class FFmpeg { private const string DllName = "ffmpeg.dll"; [DllImport(DllName)] public static extern void av_register_all(); [DllImport(DllName)] public static extern void avcodec_register_all(); [DllImport(DllName)] public static extern int avformat_open_input(AVFormatContext** ps, string url, AVInputFormat* fmt, AVDictionary** options); [DllImport(DllName)] public static extern int avcodec_decode_video2(AVCodecContext* avctx, AVFrame* picture, int* got_picture_ptr, AVPacket* avpkt); [DllImport(DllName)] public static extern AVCodec* avcodec_find_decoder(AVCodecID id); [DllImport(DllName)] public static extern AVCodecContext* avcodec_alloc_context3(AVCodec* codec); [DllImport(DllName)] public static extern int avcodec_parameters_to_context(AVCodecContext* codec, AVCodecParameters* par); [DllImport(DllName)] public static extern int avcodec_open2(AVCodecContext* avctx, AVCodec* codec, AVDictionary** options); [DllImport(DllName)] public static extern int av_read_frame(AVFormatContext* s, AVPacket* pkt); [DllImport(DllName)] public static extern void av_packet_unref(AVPacket* pkt); [DllImport(DllName)] public static extern AVFrame* av_frame_alloc(); [DllImport(DllName)] public static extern SwsContext* sws_getContext(int srcW, int srcH, AVPixelFormat srcFormat, int dstW, int dstH, AVPixelFormat dstFormat, int flags, SwsFilter* srcFilter, SwsFilter* dstFilter, double* param); [DllImport(DllName)] public static extern int av_image_alloc(byte_ptrArray4 pointers, int_array4 linesizes, int w, int h, AVPixelFormat pix_fmt, int align); [DllImport(DllName)] public static extern void sws_scale(SwsContext* c, byte_ptrArray4 srcSlice, int_array4 srcStride, int srcSliceY, int srcSliceH, byte_ptrArray4 dst, int_array4 dstStride); [DllImport(DllName)] public static extern void sws_freeContext(SwsContext* swsContext); [DllImport(DllName)] public static extern void av_frame_free(AVFrame** frame); [DllImport(DllName)] public static extern void avcodec_free_context(AVCodecContext** avctx); [DllImport(DllName)] public static extern void avformat_close_input(AVFormatContext** s); [DllImport(DllName)] public static extern void av_freep(void* ptr); } public enum AVMediaType { AVMEDIA_TYPE_UNKNOWN = -1, AVMEDIA_TYPE_VIDEO, AVMEDIA_TYPE_AUDIO, AVMEDIA_TYPE_DATA, AVMEDIA_TYPE_SUBTITLE, AVMEDIA_TYPE_ATTACHMENT, AVMEDIA_TYPE_NB } public enum AVCodecID { AV_CODEC_ID_NONE, /* video codecs */ AV_CODEC_ID_MPEG1VIDEO, AV_CODEC_ID_MPEG2VIDEO, ///< preferred ID for MPEG-1/2 video decoding AV_CODEC_ID_H261, AV_CODEC_ID_H263, AV_CODEC_ID_RV10, AV_CODEC_ID_RV20, AV_CODEC_ID_MJPEG, AV_CODEC_ID_MJPEGB, AV_CODEC_ID_LJPEG, AV_CODEC_ID_SP5X, AV_CODEC_ID_JPEGLS, AV_CODEC_ID_MPEG4, AV_CODEC_ID_RAWVIDEO, AV_CODEC_ID_MSMPEG4V1, AV_CODEC_ID_MSMPEG4V2, AV_CODEC_ID_MSMPEG4V3, AV_CODEC_ID_WMV1, AV_CODEC_ID_WMV2, AV_CODEC_ID_H263P, AV_CODEC_ID_H263I, AV_CODEC_ID_FLV1, AV_CODEC_ID_SVQ1, AV_CODEC_ID_SVQ3, AV_CODEC_ID_DVVIDEO, AV_CODEC_ID_HUFFYUV, AV_CODEC_ID_CYUV, AV_CODEC_ID_H264, AV_CODEC_ID_INDEO3, AV_CODEC_ID_VP3, AV_CODEC_ID_THEORA, AV_CODEC_ID_ASV1, AV_CODEC_ID_ASV2, AV_CODEC_ID_FFV1, AV_CODEC_ID_4XM, AV_CODEC_ID_VCR1, AV_CODEC_ID_CLJR, AV_CODEC_ID_MDEC, AV_CODEC_ID_ROQ, AV_CODEC_ID_INTERPLAY_VIDEO, AV_CODEC_ID_XAN_WC3, AV_CODEC_ID_XAN_WC4, AV_CODEC_ID_RPZA, AV_CODEC_ID_CINEPAK, AV_CODEC_ID_WS_VQA, AV_CODEC_ID_MSRLE, AV_CODEC_ID_MSVIDEO1, AV_CODEC_ID_IDCIN, AV_CODEC_ID_8BPS, AV_CODEC_ID_SMC, AV_CODEC_ID_FLIC, AV_CODEC_ID_TRUEMOTION1, AV_CODEC_ID_VMDVIDEO, AV_CODEC_ID_MSZH, AV_CODEC_ID_ZLIB, AV_CODEC_ID_QTRLE, AV_CODEC_ID_TSCC, AV_CODEC_ID_ULTI, AV_CODEC_ID_QDRAW, AV_CODEC_ID_VIXL, AV_CODEC_ID_QPEG, AV_CODEC_ID_PNG, AV_CODEC_ID_PPM, AV_CODEC_ID_PBM, AV_CODEC_ID_PGM, AV_CODEC_ID_PGMYUV, AV_CODEC_ID_PAM, AV_CODEC_ID_FFVHUFF, AV_CODEC_ID_RV30, AV_CODEC_ID_RV40, AV_CODEC_ID_VC1, AV_CODEC_ID_WMV3, AV_CODEC_ID_LOCO, AV_CODEC_ID_WNV1, AV_CODEC_ID_AASC, AV_CODEC_ID_INDEO2, AV_CODEC_ID_FRAPS, AV_CODEC_ID_TRUEMOTION2, AV_CODEC_ID_BMP, AV_CODEC_ID_CSCD, AV_CODEC_ID_MMVIDEO, AV_CODEC_ID_ZMBV, AV_CODEC_ID_AVS, AV_CODEC_ID_SMACKVIDEO, AV_CODEC_ID_NUV, AV_CODEC_ID_KMVC, AV_CODEC_ID_FLASHSV, AV_CODEC_ID_CAVS, AV_CODEC_ID_JPEG2000, AV_CODEC_ID_VMNC, AV_CODEC_ID_VP5, AV_CODEC_ID_VP6, AV_CODEC_ID_VP6F, AV_CODEC_ID_TARGA, AV_CODEC_ID_DSICINVIDEO, AV_CODEC_ID_TIERTEXSEQVIDEO, AV_CODEC_ID_TIFF, AV_CODEC_ID_GIF, AV_CODEC_ID_DXA, AV_CODEC_ID_DNXHD, AV_CODEC_ID_THP, AV_CODEC_ID_SGI, AV_CODEC_ID_C93, AV_CODEC_ID_BETHSOFTVID, AV_CODEC_ID_PTX, AV_CODEC_ID_TXD, AV_CODEC_ID_VP6A, AV_CODEC_ID_AMV, AV_CODEC_ID_VB, AV_CODEC_ID_PCX, AV_CODEC_ID_SUNRAST, AV_CODEC_ID_INDEO4, AV_CODEC_ID_INDEO5, AV_CODEC_ID_MIMIC, AV_CODEC_ID_RL2, AV_CODEC_ID_ESCAPE124, AV_CODEC_ID_DIRAC, AV_CODEC_ID_BFI, AV_CODEC_ID_CMV, AV_CODEC_ID_MOTIONPIXELS, AV_CODEC_ID_TGV, AV_CODEC_ID_TGQ, AV_CODEC_ID_TQI, AV_CODEC_ID_AURA, AV_CODEC_ID_AURA2, AV_CODEC_ID_V210X, AV_CODEC_ID_TMV, AV_CODEC_ID_V210, AV_CODEC_ID_DPX, AV_CODEC_ID_MAD, AV_CODEC_ID_FRWU, AV_CODEC_ID_FLASHSV2, AV_CODEC_ID_CDGRAPHICS, AV_CODEC_ID_R210, AV_CODEC_ID_ANM, AV_CODEC_ID_BINKVIDEO, AV_CODEC_ID_IFF_ILBM, AV_CODEC_ID_IFF_BYTERUN1, AV_CODEC_ID_KGV1, AV_CODEC_ID_YOP, AV_CODEC_ID_VP8, AV_CODEC_ID_PICTOR, AV_CODEC_ID_ANSI, AV_CODEC_ID_A64_MULTI, AV_CODEC_ID_A64_MULTI5, AV_CODEC_ID_R10K, AV_CODEC_ID_MXPEG, AV_CODEC_ID_LAGARITH, AV_CODEC_ID_PRORES, AV_CODEC_ID_JV, AV_CODEC_ID_DFA, AV_CODEC_ID_WMV3IMAGE, AV_CODEC_ID_VC1IMAGE, AV_CODEC_ID_UTVIDEO, AV_CODEC_ID_BMV_VIDEO, AV_CODEC_ID_VBLE, AV_CODEC_ID_DXTORY, AV_CODEC_ID_V410, AV_CODEC_ID_XWD, AV_CODEC_ID_CDXL, AV_CODEC_ID_XBM, AV_CODEC_ID_ZEROCODEC,

openGL ES 在android中通过MediaCodec RGB的buffer转换MP4原理

在 Android 中,要通过 MediaCodec 将 OpenGL ES 中的 RGB 数据转换为 MP4 格式的视频,需要以下步骤: 1. 创建一个 MediaCodec 编码器,并将其配置为编码 H.264 视频格式。 2. 使用 SurfaceTexture 将 OpenGL ES 中的图像渲染到 Surface 上。 3. 从 Surface 中获取帧数据,并将其传递给 MediaCodec 编码器进行编码。 4. 编码器将帧数据编码为 H.264 视频流,并将其存储到一个 MP4 文件中。 其中,步骤 2 和 3 是关键步骤,需要使用 Android 中提供的一些 API 来实现。具体来说,可以使用 SurfaceTexture 的 onFrameAvailable 回调函数来获取新的帧数据,然后将其传递给 MediaCodec 编码器进行编码。 需要注意的是,由于 OpenGL ES 中的帧数据是以 RGB 格式存储的,而 MediaCodec 编码器需要的是 YUV 格式的数据,因此需要在传递给编码器之前进行 RGB 到 YUV 的转换。这可以通过 OpenGL ES 中提供的一些函数来实现,例如 glReadPixels 和 glTexImage2D。 总体来说,将 OpenGL ES 中的 RGB 数据转换为 MP4 格式的视频是一个比较复杂的过程,需要涉及到多个方面的知识,包括 OpenGL ES、MediaCodec、SurfaceTexture 等。

相关推荐

最新推荐

recommend-type

树莓派使用python-librtmp实现rtmp推流h264的方法

本文将介绍如何在树莓派上使用Python和librtmp库实现RTMP推流H264的方法。这个过程对于创建实时视频流服务或者在H264编码的视频流中添加自定义数据(例如弹幕)非常有用。librtmp库是一个用于访问Real Time ...
recommend-type

H264的sps和pps涵义解析

H.264 编码算法中 SPS 和 PPS 的涵义解析 H.264 编码算法中的序列参数集(Sequence Parameter Set,SPS)和图像参数集(Picture Parameter Set,PPS)是两个非常重要的概念,它们都是 H.264 编码算法中用于描述视频...
recommend-type

Java解码H264格式视频流中的图片

"Java解码H264格式视频流中的图片" Java解码H264格式视频流中的图片是指使用Java语言对H264格式的视频流进行解码,并将其转换为图片的过程。在这个过程中,我们需要使用到一些专门的库和工具,例如JavaCV和FFmpeg,...
recommend-type

rfc6184_h264.pdf

IETF H264
recommend-type

H264与H265的区别.docx

H264与H265视频编解码技术比较 H264和H265是两种广泛使用的视频编解码标准,分别由ITU-T和ISO/IEC制定。两者都用于视频压缩和解压缩,但它们有着不同的编码流程、块划分、帧内预测和帧间预测机制。 编码流程 H264...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。