STM32的扫频绘制幅频特性曲线
时间: 2023-07-27 07:06:49 浏览: 713
对于STM32的扫频绘制幅频特性曲线,你可以使用STM32的定时器和DMA来实现。以下是一个简单的示例代码,供参考:
```c
#include "stm32f4xx.h"
#define SAMPLE_RATE 10000 // 采样率
#define BUFFER_SIZE 5000 // 缓冲区大小
uint16_t adc_buffer[BUFFER_SIZE]; // ADC数据缓冲区
void ADC_Configuration(void)
{
ADC_InitTypeDef ADC_InitStructure;
ADC_CommonInitTypeDef ADC_CommonInitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
// 配置GPIO为模拟输入
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// 配置DMA
DMA_InitStructure.DMA_Channel = DMA_Channel_0;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)adc_buffer;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = BUFFER_SIZE;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream0, &DMA_InitStructure);
// 配置ADC
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStructure);
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = 1;
ADC_Init(ADC1, &ADC_InitStructure);
// 配置ADC通道
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_3Cycles);
// 使能DMA请求
ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);
// 配置ADC DMA
ADC_DMACmd(ADC1, ENABLE);
// 启动DMA
DMA_Cmd(DMA2_Stream0, ENABLE);
// 启动ADC转换
ADC_Cmd(ADC1, ENABLE);
// 等待ADC稳定
delay_us(100);
// 启动连续模式转换
ADC_SoftwareStartConv(ADC1);
}
int main(void)
{
// 初始化系统时钟等
ADC_Configuration();
while (1)
{
// 处理ADC数据,绘制幅频特性曲线
// 延时等待下一次采样
delay_us(1000000 / SAMPLE_RATE);
}
}
```
在上述示例代码中,我们使用了ADC1的通道0来进行采样,并通过DMA2的Stream0将采样数据传输到缓冲区adc_buffer中。然后,你可以根据采样数据进行幅频特性曲线的绘制和处理。注意,示例代码中的delay_us函数需要根据你的实际情况进行实现。
希望这个示例能对你有所帮助!
阅读全文