Python医用聊天机器人代码
时间: 2024-04-12 20:26:13 浏览: 154
Python医用聊天机器人代码可以使用自然语言处理库NLTK和机器学习库scikit-learn来实现。以下是一个简单的示例代码:
```python
import nltk
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# 语料库
corpus = [
'我感觉不舒服',
'我头痛',
'我喉咙痛',
'我发烧',
'我咳嗽'
]
# 初始化词形还原器
lemmatizer =NetLemmatizer()
# 对语料库进行词形还和分词处理
processed_corpus = []
for sentence in corpus:
words = nltk.word_tokenize(sentence)
lemmatized_words = [lemizer.lemmatize(word) for word in words]
processed_corpus.append(' '.join(lemmatized_words))
# 创建TF-IDF向量化器
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer_transform(processed_corpus)
# 用户输入
user_input = input("请输入您的症状:")
# 对用户输入进行处理
processed_user_input = ' '.join([lemmatizer.lemmatize(word) for word in nltk.word_tokenize(user_input)])
# 将用户输入转换为TF-IDF向量
user_tfidf = vectorizer.transform([processed_user_input])
# 计算用户输入与语料库中每个句子的相似度
similarity_scores = cosine_similarity(userfidf, tfidf_matrix)
# 获取最相似的句子
most_similar_sentence_index = similarity_scores.argmax()
response = corpus[most_similar_sentence_index]
print("医生的回答:", response)
# 相关问题
print("
阅读全文