基于矩阵分解的经典推荐算法
时间: 2023-12-15 16:06:58 浏览: 76
回答: 基于矩阵分解的经典推荐算法有两种,分别是传统的SVD(奇异值分解)和Funk SVD(基于隐语义模型的矩阵分解)。SVD是将用户-商品矩阵分解成两个矩阵的乘积,通过优化损失函数来得到最佳的分解结果,从而实现推荐。Funk SVD是对SVD的改进,引入了偏差项来更好地拟合用户对商品的评分。这两种算法都是基于矩阵分解的协同过滤推荐算法,通过学习用户和商品的隐含特征来进行推荐。\[1\]\[2\]
#### 引用[.reference_title]
- *1* *3* [推荐算法——基于矩阵分解的推荐算法](https://blog.csdn.net/google19890102/article/details/51124556)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [基于矩阵分解的协同过滤推荐算法原理及代码](https://blog.csdn.net/sinat_31854967/article/details/118680371)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文