MASAC 算法解决马尔可夫博弈

时间: 2024-03-28 22:32:24 浏览: 50
MATLAB中的MASAC算法是一种用于解决马尔可夫博弈问题的算法。MASAC(Multi-Agent Soft Actor-Critic)算法是一种基于强化学习的方法,用于解决多智能体系统中的博弈问题。 MASAC算法的核心思想是通过训练多个智能体的策略网络,使其能够在博弈过程中学习到最优的策略。MASAC算法使用了Soft Actor-Critic(SAC)算法的思想,将其扩展到了多智能体系统中。 在MATLAB中,可以使用深度强化学习工具箱(Deep Reinforcement Learning Toolbox)来实现MASAC算法。该工具箱提供了一系列函数和类,用于构建和训练强化学习模型。 要使用MASAC算法解决马尔可夫博弈问题,可以按照以下步骤进行操作: 1. 定义智能体的状态空间、动作空间和奖励函数。 2. 构建智能体的策略网络和值函数网络。 3. 使用MASAC算法进行模型训练,通过与其他智能体进行博弈来更新策略网络和值函数网络。 4. 在训练过程中,可以使用经验回放(Experience Replay)和目标网络(Target Network)等技术来提高训练效果。 5. 根据训练得到的策略网络,可以进行预测和决策。 需要注意的是,MASAC算法的具体实现可能会因具体问题而有所不同,可以根据具体情况进行调整和优化。 希望以上信息对您有所帮助!如果您有任何进一步的问题,请随时提问。
相关问题

masac算法代码

以下是 MASAC 算法的代码示例,其中包括了 actor 和 critic 的网络结构以及训练过程。 ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np from collections import deque import random class Actor(nn.Module): def __init__(self, state_dim, action_dim, max_action, hidden_size=256): super(Actor, self).__init__() self.fc1 = nn.Linear(state_dim, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, action_dim) self.max_action = max_action def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) x = self.max_action * torch.tanh(self.fc3(x)) return x class Critic(nn.Module): def __init__(self, state_dim, action_dim, hidden_size=256): super(Critic, self).__init__() self.fc1 = nn.Linear(state_dim + action_dim, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, 1) def forward(self, state, action): x = torch.cat([state, action], 1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x class MASAC: def __init__(self, state_dim, action_dim, max_action, discount=0.99, tau=0.005, alpha=0.2, actor_lr=1e-3, critic_lr=1e-3, batch_size=256, memory_size=1000000): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.actor = Actor(state_dim, action_dim, max_action).to(self.device) self.actor_target = Actor(state_dim, action_dim, max_action).to(self.device) self.actor_target.load_state_dict(self.actor.state_dict()) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr) self.critic1 = Critic(state_dim, action_dim).to(self.device) self.critic1_target = Critic(state_dim, action_dim).to(self.device) self.critic1_target.load_state_dict(self.critic1.state_dict()) self.critic1_optimizer = optim.Adam(self.critic1.parameters(), lr=critic_lr) self.critic2 = Critic(state_dim, action_dim).to(self.device) self.critic2_target = Critic(state_dim, action_dim).to(self.device) self.critic2_target.load_state_dict(self.critic2.state_dict()) self.critic2_optimizer = optim.Adam(self.critic2.parameters(), lr=critic_lr) self.discount = discount self.tau = tau self.alpha = alpha self.batch_size = batch_size self.memory = deque(maxlen=memory_size) def select_action(self, state): state = torch.FloatTensor(state.reshape(1, -1)).to(self.device) return self.actor(state).cpu().data.numpy().flatten() def store_transition(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def train(self): if len(self.memory) < self.batch_size: return batch = random.sample(self.memory, self.batch_size) state_batch = torch.FloatTensor(np.array([transition[0] for transition in batch])).to(self.device) action_batch = torch.FloatTensor(np.array([transition[1] for transition in batch])).to(self.device) reward_batch = torch.FloatTensor(np.array([transition[2] for transition in batch])).to(self.device) next_state_batch = torch.FloatTensor(np.array([transition[3] for transition in batch])).to(self.device) done_batch = torch.FloatTensor(np.array([transition[4] for transition in batch])).to(self.device) # Critic Update with torch.no_grad(): next_actions = self.actor_target(next_state_batch) noise = torch.randn_like(next_actions) * self.alpha next_actions = (next_actions + noise).clamp(-self.actor.max_action, self.actor.max_action) target1 = self.critic1_target(next_state_batch, next_actions) target2 = self.critic2_target(next_state_batch, next_actions) target = torch.min(target1, target2) target = reward_batch + self.discount * (1 - done_batch) * target current1 = self.critic1(state_batch, action_batch) current2 = self.critic2(state_batch, action_batch) critic1_loss = F.mse_loss(current1, target) critic2_loss = F.mse_loss(current2, target) self.critic1_optimizer.zero_grad() critic1_loss.backward() self.critic1_optimizer.step() self.critic2_optimizer.zero_grad() critic2_loss.backward() self.critic2_optimizer.step() # Actor Update actions = self.actor(state_batch) actor_loss = -self.critic1(state_batch, actions).mean() self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # Update Target Networks for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for param, target_param in zip(self.critic1.parameters(), self.critic1_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for param, target_param in zip(self.critic2.parameters(), self.critic2_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) ``` 这里的 MASAC 算法与 DDPG 算法类似,只是多了一个 actor target 和多个 critic。其中 actor target 用于计算 critic 的 target 值,多个 critic 用于减小 Q 值的估计误差。具体的训练过程可以参考代码中的注释。

强化学习MASAC算法和MADDPG 算法的区别

MASAC算法和MADDPG算法都是用于解决多智能体强化学习问题的算法,它们的主要区别在于以下几点: 1. 目标函数不同:MASAC算法的目标函数中包含了所有智能体的Q值,而MADDPG算法的目标函数只包含目标智能体的Q值。 2. 策略更新方式不同:MASAC算法使用了最大熵强化学习的思想,通过最大化策略的熵来促进策略的探索,而MADDPG算法则使用了Actor-Critic策略梯度更新方法。 3. 动作选择方式不同:MASAC算法中,每个智能体都通过最大化自己的Q值来选择动作,而MADDPG算法中,每个智能体只考虑目标智能体的Q值来选择动作。 总的来说,MASAC算法更注重探索和协作,而MADDPG算法更注重模型的稳定性和可靠性。

相关推荐

zip
基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
zip
CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的这个代码主要是研究手写数字的识别效率,用卷积神经网络算法来实现,用的是官方手写字体数据,能够显现百分之九十以上的识别率+使用说明文档 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
zip
基于LSTM+CNN的自然语言处理,基于单维LSTM、多维LSTM时序预测算法和多元线性回归算法的预测模型LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
zip
rar

最新推荐

recommend-type

scrapy练习 获取喜欢的书籍

主要是根据网上大神做的 项目一 https://zhuanlan.zhihu.com/p/687522335
recommend-type

基于PyTorch的Embedding和LSTM的自动写诗实验.zip

基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
recommend-type

基于Java的云计算平台设计源码

云计算平台设计源码:该项目基于Java开发,包含126个文件,主要使用Java、JavaScript、HTML和CSS语言。该项目是一个云计算平台,旨在为用户提供一个高效、灵活的云计算服务,包括资源管理、虚拟化技术、分布式存储等功能,以满足不同用户的计算和存储需求。
recommend-type

grpcio-1.41.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

grpcio-1.44.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。