matlab特征重要性
时间: 2023-09-02 12:12:39 浏览: 206
在MATLAB中,可以通过支持向量机递归特征消除(SVM-RFE)来获取特征的重要性排序。SVM-RFE是一种使用支持向量机进行特征选择的方法,它通过反复训练SVM模型并排除最不重要的特征来确定特征的重要性。具体实现可以使用以下代码:
```
function r = SVMRFE(label, data)
n = size(data,2);
s = 1:n;
r = [];
iter = 1;
while ~isempty(s)
X = data(:,s);
model = svmtrain(label, X);
w = model.SVs' * model.sv_coef;
c = w.^2;
[c_minvalue, f = min(c);
r = [s(f),r];
ind = [1:f-1, f, 1:length(s)];
s = s(ind);
iter = iter + 1;
end
end
```
该函数接受标签(label)和数据(data)作为输入,并返回特征的重要性排序(r)。在函数内部,它使用支持向量机训练模型,并计算每个特征的权重(w),然后根据权重的大小进行排序,最终得到特征的重要性排序。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [MATLAB随机森林计算重要性](https://blog.csdn.net/m0_54176616/article/details/127758648)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [MATLAB中SVM的特征重要性排序](https://blog.csdn.net/Jinzhong_Kang/article/details/84678540)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文