使用C++ 对图片进行聚类kmeams
时间: 2024-12-24 16:21:38 浏览: 0
在C++中,K-means聚类是一种常见的无监督机器学习算法,用于将一组数据分为多个类别。以下是使用OpenCV和EM算法实现K-means的基本步骤:
1. **导入所需库**:
```cpp
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
```
2. **读取图片并转换为灰度图像**:
```cpp
Mat img = imread("input.jpg");
if (!img.data)
// 处理加载失败的情况
cvtColor(img, img_gray, COLOR_BGR2GRAY);
```
3. **归一化和准备数据**:
```cpp
normalize(img_gray, img_gray, 0, 255, NORM_MINMAX); // 将像素值归一化至0-255
std::vector<Mat> data;
for (int i = 0; i < img_gray.rows; ++i)
data.push_back(Mat(1, img_gray.cols, CV_32FC1, img_gray.ptr<float>(i)));
```
4. **创建KMeans对象并设置参数**:
```cpp
Ptr<ml::KMeans> kmeans = ml::createKMeans();
kmeans->setClustersNumber(K); // K是想要的聚类数
kmeans->setMaxIterations(MAX_ITERS); // 设置最大迭代次数
```
5. **训练模型**:
```cpp
kmeans->train(data);
```
6. **预测聚类标签**:
```cpp
std::vector<int> labels;
kmeans->predict(data, labels);
```
7. **显示结果**:
```cpp
Mat clusterImgs(img.size(), CV_8UC3, Scalar::all(0));
for (int i = 0; i < labels.size(); ++i) {
rectangle(clusterImgs, Point(labels[i] % img.cols, labels[i] / img.cols),
Point((labels[i] % img.cols) + 1, (labels[i] / img.cols) + 1), Scalar::random(), 2);
}
imshow("Clustered Image", clusterImgs);
```
阅读全文