皮尔逊卡方检验python代码
时间: 2024-08-27 16:00:25 浏览: 161
python开心麻花影视作品分析的程序.zip
皮尔逊卡方检验是一种统计测试方法,用于确定两个分类变量之间是否存在关联。在Python中,我们可以使用`scipy.stats`库中的`chi2_contingency()`函数来执行这个检验。以下是基本的代码示例:
```python
from scipy.stats import chi2_contingency
import pandas as pd
# 假设我们有如下数据,这是两个分类变量的交叉表
data = {
'Category1': ['A', 'B', 'A', 'B'],
'Category2': ['X', 'Y', 'Y', 'X']
}
# 将数据转换为DataFrame
df = pd.DataFrame(data)
# 计算卡方值、度量自由度、p值和观察值
chi_square, p_value, dof, expected = chi2_contingency(df)
# 输出结果
print("Chi-Square Statistic:", chi_square)
print("P-value:", p_value)
print("Degrees of Freedom:", dof)
print("Expected frequencies:\n", expected)
```
在这个例子中,`chi2_contingency()`返回四个值:卡方统计量、双侧p值、自由度(对于2x2表格,总是1)以及每个单元格预期的频率。
阅读全文