基于自注意力机制改进的深度残差网络
时间: 2023-12-03 17:40:49 浏览: 105
杭电人工智能导论课程验收作业-完成一个卷积神经网络的修改,加入残差模块,加入注意力机制+源代码+文档说明
基于自注意力机制改进的深度残差网络是一种用于图像分类和目标检测的深度学习模型。它是在深度残差网络的基础上引入了自注意力机制,以提高模型的性能。
以下是基于自注意力机制改进的深度残差网络的主要步骤:
1. 首先,输入图像被送入一个卷积层,以提取特征。
2. 接下来,特征图被送入一个残差块,其中包含多个卷积层和批量归一化层。这些层有助于提高模型的性能和稳定性。
3. 在残差块中,引入了自注意力机制。自注意力机制可以帮助模型更好地理解图像中的不同区域之间的关系,并提高模型的性能。
4. 在自注意力机制中,每个像素都被视为一个查询,一个键和一个值。然后,使用这些查询、键和值来计算每个像素的注意力权重。这些权重用于加权像素的值,以生成最终的特征图。
5. 最后,特征图被送入一个全局平均池化层,以生成一个向量表示整个图像。这个向量被送入一个全连接层,以生成最终的分类结果。
以下是一个基于自注意力机制改进的深度残差网络的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=stride, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.attention = SelfAttention(out_channels)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.attention(out)
out += identity
out = self.relu(out)
return out
class SelfAttention(nn.Module):
def __init__(self, in_channels):
super(SelfAttention, self).__init__()
self.query_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
batch_size, channels, height, width = x.size()
proj_query = self.query_conv(x).view(batch_size, -1, width * height).permute(0, 2, 1)
proj_key = self.key_conv(x).view(batch_size, -1, width * height)
energy = torch.bmm(proj_query, proj_key)
attention = F.softmax(energy, dim=-1)
proj_value = self.value_conv(x).view(batch_size, -1, width * height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(batch_size, channels, height, width)
out = self.gamma * out + x
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * block.expansion)
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for i in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def ResNet50():
return ResNet(ResidualBlock, [3, 4, 6, 3])
```
阅读全文