LEA 4(%ESI), %EDI 和MOV 4(%ESI), %EDI有什么区别

时间: 2024-05-25 12:08:10 浏览: 19
LEA 4(%ESI), %EDI和MOV 4(%ESI), %EDI是两个不同的汇编指令,它们的区别在于: LEA指令将4(%ESI)的地址计算出来,并将其存储到%EDI寄存器中,但是并不会将4(%ESI)的值传递给%EDI,因此LEA指令并没有真正地读取4(%ESI)的值。 MOV指令则是将4(%ESI)的值传递给%EDI寄存器中,覆盖%EDI中原有的值。 因此,LEA指令和MOV指令在汇编代码中所起的作用是不同的。LEA指令通常用于计算地址,而MOV指令则用于传递值。在使用这两个指令时,需要根据具体情况来选择合适的指令。
相关问题

# int8 -- 双出错故障。 类型:放弃;有错误码。 # 通常当 CPU 在调用前一个异常的处理程序而又检测到一个新的异常时,这两个异常会被串行地进行 # 处理,但也会碰到很少的情况,CPU 不能进行这样的串行处理操作,此时就会引发该中断。 98 _double_fault: 99 pushl $_do_double_fault # C 函数地址入栈。 100 error_code: 101 xchgl %eax,4(%esp) # error code <-> %eax,eax 原来的值被保存在堆栈上。 102 xchgl %ebx,(%esp) # &function <-> %ebx,ebx 原来的值被保存在堆栈上。 103 pushl %ecx 104 pushl %edx 105 pushl %edi 106 pushl %esi 107 pushl %ebp 108 push %ds 109 push %es 110 push %fs 111 pushl %eax # error code # 出错号入栈。 112 lea 44(%esp),%eax # offset # 程序返回地址处堆栈指针位置值入栈。 113 pushl %eax 114 movl $0x10,%eax # 置内核数据段选择符。 115 mov %ax,%ds 116 mov %ax,%es 117 mov %ax,%fs 118 call *%ebx # 间接调用,调用相应的 C 函数,其参数已入栈。 addl $8,%esp # 丢弃入栈的 2 个用作 C 函数的参数。 120 pop %fs 121 pop %es 122 pop %ds 123 popl %ebp 124 popl %esi 125 popl %edi 126 popl %edx 127 popl %ecx 128 popl %ebx 129 popl %eax 130 iret 131 解释下这段话

这段话描述了一个汇编代码的执行过程,具体内容如下: 98: `_double_fault`: 这是一个标签,用于标识一个代码块或函数的入口点,这里表示双出错故障的处理。 99: `pushl $_do_double_fault`: 将 `_do_double_fault` C 函数的地址压入堆栈,准备调用该函数处理双出错故障。 100: `error_code:`: 这是一个标签,用于标识错误码处理的代码块。 101: `xchgl %eax,4(%esp)`: 交换 `%eax` 寄存器和堆栈上偏移为 4 的位置的值,将 `%eax` 中的值保存在堆栈上。 102: `xchgl %ebx,(%esp)`: 交换 `%ebx` 寄存器和堆栈顶部位置的值,将 `%ebx` 中的值保存在堆栈上。 103-107: 将 `%ecx`、`%edx`、`%edi`、`%esi`、`%ebp` 寄存器的值依次压入堆栈。 108-109: 将 `%ds` 和 `%es` 寄存器的值压入堆栈。 110: `pushl %eax`: 将 `%eax` 寄存器中的值压入堆栈,即错误码入栈。 111: `lea 44(%esp),%eax`: 计算堆栈指针位置偏移为 44 的地址并存储到 `%eax` 寄存器中。 113: `pushl %eax`: 将 `%eax` 寄存器中的值压入堆栈,即程序返回地址处堆栈指针位置值入栈。 114-117: 将立即数 `0x10`(内核数据段选择符)移动到 `%ds`、`%es` 和 `%fs` 寄存器中。 118: `call *%ebx`: 通过 `%ebx` 中保存的地址,间接调用相应的 C 函数进行处理,该函数的参数已经入栈。 119: `addl $8,%esp`: 丢弃入栈的两个用作 C 函数的参数,通过增加堆栈指针来实现。 120-122: 弹出 `%fs`、`%es` 和 `%ds` 寄存器中保存的值。 123-125: 依次弹出 `%ebp`、`%esi` 和 `%edi` 寄存器中保存的值。 126-127: 依次弹出 `%edx` 和 `%ecx` 寄存器中保存的值。 128-129: 依次弹出 `%ebx` 和 `%eax` 寄存器中保存的值。 130: `iret`: 执行中断返回指令,恢复现场并返回到之前的执行点。 总之,这段代码是用于处理双出错故障的一系列操作。它将相关寄存器的值保存到堆栈上,设置内核数据段选择符,并调用相应的 C 函数进行处理。最后,通过中断返回指令 `iret` 恢复现场并返回到之前的执行点。具体的功能和目的需要根据上下文来确定。

将以下子程序反汇编的每一层说明解释:00401020 push ebp 00401021 mov ebp,esp 00401023 sub esp,40h 00401026 push ebx 00401027 push esi 00401028 push edi 00401029 lea edi,[ebp-40h] 0040102C mov ecx,10h 00401031 mov eax,0CCCCCCCCh 00401036 rep stos dword ptr [edi] 9: 10: return a*a+b*b; 00401038 mov eax,dword ptr [ebp+8] 0040103B imul eax,dword ptr [ebp+8] 0040103F mov ecx,dword ptr [ebp+0Ch] 00401042 imul ecx,dword ptr [ebp+0Ch] 00401046 add eax,ecx 11: 12: } 00401048 pop edi 00401049 pop esi 0040104A pop ebx 0040104B mov esp,ebp 0040104D pop ebp 0040104E ret

这段代码是一个带有两个参数的函数,函数的返回值是两个参数的平方和。以下是每条指令的解释: 00401020 push ebp ; 保存当前栈底指针 00401021 mov ebp,esp ; 设置新的栈底指针 00401023 sub esp,40h ; 为局部变量分配空间 00401026 push ebx ; 保存 ebx 寄存器的值 00401027 push esi ; 保存 esi 寄存器的值 00401028 push edi ; 保存 edi 寄存器的值 00401029 lea edi,[ebp-40h] ; 将 edi 寄存器设置为局部变量的地址 0040102C mov ecx,10h ; 将 ecx 寄存器设置为 16 00401031 mov eax,0CCCCCCCCh; 将 eax 寄存器设置为 0xcccccccc 00401036 rep stos dword ptr [edi] ; 将 dword ptr [edi] 的值设置为 eax,重复 ecx 次,即初始化局部变量为 0xcccccccc 9: 10: return a*a+b*b; 00401038 mov eax,dword ptr [ebp+8] ; 将 eax 寄存器设置为函数参数 a 的值 0040103B imul eax,dword ptr [ebp+8] ; 将 eax 寄存器与函数参数 a 的值相乘,即计算 a*a 0040103F mov ecx,dword ptr [ebp+0Ch] ; 将 ecx 寄存器设置为函数参数 b 的值 00401042 imul ecx,dword ptr [ebp+0Ch] ; 将 ecx 寄存器与函数参数 b 的值相乘,即计算 b*b 00401046 add eax,ecx ; 将 eax 寄存器与 ecx 寄存器的值相加,即计算 a*a+b*b 11: 12: } 00401048 pop edi ; 恢复 edi 寄存器的值 00401049 pop esi ; 恢复 esi 寄存器的值 0040104A pop ebx ; 恢复 ebx 寄存器的值 0040104B mov esp,ebp ; 恢复栈顶指针 0040104D pop ebp ; 恢复栈底指针 0040104E ret ; 返回 a*a+b*b 的值

相关推荐

最新推荐

recommend-type

简单反汇编之for循环、if判断--详细注释.doc

进入`test`函数的反汇编代码,首先看到的是函数的初始化过程,包括保存寄存器状态(`push ebp, mov ebp, esp, sub esp, 48h, push ebx, push esi, push edi`),然后使用`lea edi, [ebp-48h]`和`mov ecx, 12h`以及`...
recommend-type

DSP C6000系列 常用汇编指令大全

* MOV:双操作数指令,两个操作数中必须有一个是寄存器。 * MOVSX:先符号扩展,再传送。 * MOVZX:先零扩展,再传送。 * PUSH:把字压入堆栈。 * POP:把字弹出堆栈。 * PUSHA:把 AX,CX,DX,BX,SP,BP,SI,DI 依次压...
recommend-type

校园网Web平台二手商品交易系统的设计与实现研究论文

python有趣的库本系统是一款基于JSP/J2EE技术的校园网二手交易平台,采用Java语言开发。它采用流行的B/S架构,以互联网为基础运行,服务端安装简便,客户端则只需联网即可通过浏览器轻松访问。无需复杂的C/S模式安装、配置和维护流程。系统利用Java的面向对象、跨平台、高安全、高稳定、多线程等特性,结合其对网络编程技术的支持,使得本平台具有极高的实用价值。 系统结构清晰,分为三大核心部分:JavaBeans负责业务逻辑处理,JSP结合HTML和JavaScript负责界面展示,Servlet则作为中间件,并通过JDBC-ODBC桥接器与SQL Server 2000数据库进行交互,确保数据访问的高效和稳定。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

220ssm_mysql_jsp 协同过滤算法的离散数学题推荐系统.zip(可运行源码+sql文件+文档)

本系统包括学生和管理员以及教师三种使用权限, 学生功能如下: (1)参加考试:学生可以进行在线考试。 (2)个性化推荐习题:系统可以给学生进行个性化习题的推荐。 (3)考试记录:用户可以学生可以查看自己的考试记录。 (4)知识点习题推荐:用户可以查看知识点习题推荐并进行答题。 管理员功能如下: (1)班级管理:管理员可以对班级信息进行管理。 (2)教师管理:管理员可以进行教师信息管理。 (3)年级管理:管理员可以进行年级信息管理。 (4)学生管理:管理员可以进行学生信息管理。 (5)专业管理:管理员可以进行专业信息管理。 教师功能如下: (1)试卷:教师可以对试卷信息进行管理。 (2)题库:教师可以对题库信息进行管理。 (3)知识点管理:教师可以对知识点信息进行管理。 关键词:考试系统,协同过滤算法,在线考试 SSM框架 JSP技术
recommend-type

毕设项目:基于J2EE的B2C电子商务系统(文档+源码+开题报告+文献综述+任务书+答辩PPT)

目录 1 引言 1 正文 4 1.系统概述 4 1.1选题来源及意义 4 1.2 技术背景 5 1.2.1 JSP 5 1.2.2 SERVLET 8 1.2.3 J2EE 10 1.2.4 B/S模式 12 1.3 设计目标 13 1.4 开发工具简介 13 1.4.1 IBM WebSphere5.1.1 13 1.4.2 Rational Rose 2003 13 1.4.3 IBM DB2 8.2 14 2. 系统分析 16 2.1 功能需求 16 2.1.1 用户部分应实现功能 16 2.1.2 后台应实现的功能 16 2.2 系统需求 16 2.2.1 服务器端需求 16 2.2.2 客户端需求 16 2.3维护需求 16 3.系统设计 17 3.1系统设计思想 17 3.2系统功能模块设计 19 3.2.1 用户登陆模块 19 3.2.2 产品展示模块 20 3.2.3 购物车功能模块 20 3.2.4 各功能模块描述 21 4.详细设计与实现 22 4.1数据字典 22 4.1.1 用户数据字典 22 4.1.2 订单数据字典 22 4.1.3 表单数据字典 22 4.
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。